Learning in the Limit: A Mutational and Adaptive Approach | SpringerLink
Skip to main content

Abstract

The purpose of this work is to show the strong connection between learning in the limit and the second-order adaptive automaton. The connection is established using the mutating programs approach, in which any hypothesis can be used to start a learning process, and produces a correct final model following a step-by-step transformation of that hypothesis by a second-order adaptive automaton. Second-order adaptive automaton learner will be proved to acts as a learning in the limit one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chater, N., Vitányi, P.: “Ideal learning” of natural language: positive results about learning from positive evidence. Journal of Mathematical Psychology 51(3), 135–163 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Handbook of the Philosophy of Science (HPS). Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier (2011)

    Google Scholar 

  3. Gold, E.: Language identification in the limit. Information and Control 10(5), 447–474 (1967)

    Article  MATH  Google Scholar 

  4. Li, M., Vitányi, P.: Computational Machine Learning in Theory and Praxis. In: van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 518–535. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  5. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer Publishing Company, Incorporated (2008)

    Google Scholar 

  6. Paul, W.J., Solomonoff, R.J.: Autonomous theory building systems. Technical Report D 6600, Computer Science Department, University of Saarbruecken, Germany (1990)

    Google Scholar 

  7. de Azevedo da Rocha, R. L., Neto, J.J.: Adaptive automaton, limits and complexity compared to the Turing machine - in Portuguese Autômato Adaptativo, Limites e Complexidade em Comparação com Máquina de Turing. In: Proceedings of the I Congress of Logic Applied to Technology, LAPTEC 2000, São Paulo, Faculdade SENAC de Ciências Exatas e Tecnologia, pp. 33–48 (2000)

    Google Scholar 

  8. Rubinstein, R.S., Shutt, J.N.: Self-modifying finite automata. In: Pehrson, B., Simon, I. (eds.) Proceedings of the 13th IFIP World Computer Congress, Amsterdam. Technology and Foundations: Information Processing 1994, vol. I, pp. 493–498. North-Holland (1994)

    Google Scholar 

  9. Salthe, S., Matsuno, K.: Self-organization in hierarchical systems. Journal of Social and Evolutionary Systems 18(4), 327–338 (1995)

    Article  Google Scholar 

  10. Silva Filho, R.I., de Azevedo da Rocha, R.L.: Adaptive Finite Automaton: a New Algebraic Approach. In: Dobnikar, A., Lotrič, U., Šter, B. (eds.) ICANNGA 2011, Part II. LNCS, vol. 6594, pp. 275–284. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Solomonoff, R.J.: A formal theory of inductive inference. parts I and II. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  12. Solomonoff, R.J.: Does algorithmic probability solve the problem of induction? In D. L. Dowe, K. B. Korb, and J. J Oliver, editors. In: Dowe, D.L., Korb, K.B.,, J. (eds.) Proceedings of the Information, Statistics and Induction in Science (ISIS) Conference, Melbourne, Australia, pp. 7–8. World Scientific (August 1996)

    Google Scholar 

  13. Wallace, C.S.: Statistical and Inductive Inference by Mininum Message Length. Springer (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inojosa da Silva Filho, R., de Azevedo da Rocha, R.L., Gracini Guiraldelli, R.H. (2013). Learning in the Limit: A Mutational and Adaptive Approach. In: Dowe, D.L. (eds) Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Lecture Notes in Computer Science, vol 7070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44958-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44958-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44957-4

  • Online ISBN: 978-3-642-44958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics