Algorithmic Information Theory and Computational Complexity | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7070))

  • 1671 Accesses

Abstract

We present examples where theorems on complexity of computation are proved using methods in algorithmic information theory. The first example is a non-effective construction of a language for which the size of any deterministic finite automaton exceeds the size of a probabilistic finite automaton with a bounded error exponentially. The second example refers to frequency computation. Frequency computation was introduced by Rose and McNaughton in early sixties and developed by Trakhtenbrot, Kinber, Degtev, Wechsung, Hinrichs and others. A transducer is a finite-state automaton with an input and an output. We consider the possibilities of probabilistic and frequency transducers and prove several theorems establishing an infinite hierarchy of relations. We consider only relations where for each input value there is exactly one allowed output value. Relations computable by weak finite-state transducers with frequency \(\frac{km}{kn} \) but not with frequency \(\frac{m}{n} \) are presented in a non-constructive way using methods of algorithmic information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablayev, F.M., Freivalds, R.: Why sometimes probabilistic algorithms can be more effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  2. Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular frequency computations. Theoretical Computer Science 330(1), 15–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beigel, R., Gasarch, W.I., Kinber, E.B.: Frequency computation and bounded queries. Theoretical Computer Science 163(1/2), 177–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Case, J., Kaufmann, S., Kinber, E.B., Kummer, M.: Learning recursive functions from approximations. Journal of Computer and System Sciences 55(1), 183–196 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Degtev, A.N.: On (m,n)-computable sets. In: Moldavanskij, I., Gos, I. (eds.) Algebraic Systems, pp. 88–99. Universitet (1981)

    Google Scholar 

  6. Freivalds, R., Karpinski, M.: Lower Space Bounds for Randomized Computation. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 580–592. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Freivalds, R., Karpinski, M.: Lower Time Bounds for Randomized Computation. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 183–195. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Freivalds, R.: Complexity of probabilistic versus deterministic automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  9. Freivalds, R.: Models of computation, Riemann Hypothesis and classical mathematics. In: Rovan, B. (ed.) SOFSEM 1998. LNCS, vol. 1521, pp. 89–106. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Freivalds, R.: Non-constructive methods for finite probabilistic automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freivalds, R.: Amount of nonconstructivity in finite automata. Theoretical Computer Science 411(38-39), 3436–3443 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Freivalds, R., Zeugmann, T., Pogosyan, G.R.: On the Size Complexity of Deterministic Frequency Automata. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 287–298. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Garret, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  14. Gurari, E.: An Introduction to the Theory of Computation, ch. 2.2. Computer Science Press, an imprint of E. H. Freeman (1989)

    Google Scholar 

  15. Harizanova, V., Kummer, M., Owings, J.: Frequency computations and the cardinality theorem. The Journal of Symbolic Logic 57(2), 682–687 (1992)

    Article  Google Scholar 

  16. Hinrichs, M., Wechsung, G.: Time bounded frequency computations. Information and Computation 139, 234–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaņeps, J., Freivalds, R.: Minimal Nontrivial Space Complexity of Probabilistic One-Way Turing Machines. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 355–361. Springer, Heidelberg (1990)

    Google Scholar 

  18. Kinber, E.B.: Frequency calculations of general recursive predicates and frequency enumeration of sets. Soviet Mathematics Doklady 13, 873–876 (1972)

    MATH  Google Scholar 

  19. Kinber, E.B.: Frequency computations in finite automata. Kibernetika (2), 7–15 (1976), Russian; English translation in Cybernetics 12, 179–187 (1976)

    Google Scholar 

  20. Kinber, E.B., Gasarch, W.I., Zeugmann, T., Pleszkoch, M.G., Smith, C.H.: Learning Via Queries With Teams and Anomalies. In: Proceedings of COLT 1990, pp. 327–337 (1990)

    Google Scholar 

  21. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)

    MathSciNet  Google Scholar 

  22. McNaughton, R.: The Theory of Automata, a Survey. Advances in Computers 2, 379–421 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245 (1963)

    Article  MATH  Google Scholar 

  24. Michael, O.: Rabin and Dana Scott. Finite automata and their decision problems. IBM Journal of Research and Development 3(2), 115–125 (1959)

    MathSciNet  Google Scholar 

  25. Rose, G.F.: An extended notion of computability. In: Abstracts of International Congress for Logic, Methodology and Philosophy of Science, p. 14 (1960)

    Google Scholar 

  26. Solomonoff, R.: A Formal Theory of Inductive Inference, Part II. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trakhtenbrot, B.A.: On the frequency computation of functions. Algebra i Logika 2, 25–32 (1964) (Russian)

    Google Scholar 

  28. Trakhtenbrot, B.A.: Frequency Algorithms and Computations. In: Becvar, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 148–161. Springer, Heidelberg (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freivalds, R. (2013). Algorithmic Information Theory and Computational Complexity. In: Dowe, D.L. (eds) Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Lecture Notes in Computer Science, vol 7070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44958-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44958-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44957-4

  • Online ISBN: 978-3-642-44958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics