Abstract
The Dendritic Cell Algorithm (DCA) is an immune algorithm based on the behavior of dendritic cells. The DCA performance relies on its data pre-processing phase which includes two sub-steps; feature selection and signal categorization. For an automatic data pre-processing task, DCA applied Rough Set Theory (RST). Nevertheless, the developed rough approach presents an information loss as data should be discretized beforehand. Thus, the aim of this paper is to develop a new DCA feature selection and signal categorization method based on Fuzzy Rough Set Theory (FRST) which allows dealing with real-valued data with no data quantization beforehand. Results show that applying FRST, instead of RST, is more convenient for the DCA data pre-processing phase yielding much better performance in terms of accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell algorithm. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 404–417. Springer, Heidelberg (2006)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)
Chelly, Z., Elouedi, Z.: RST-DCA: A dendritic cell algorithm based on rough set theory. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 480–487. Springer, Heidelberg (2012)
Chelly, Z., Elouedi, Z.: RC-DCA: A new feature selection and signal categorization technique for the dendritic cell algorithm based on rough set theory. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 152–165. Springer, Heidelberg (2012)
Chelly, Z., Elouedi, Z.: QR-DCA: A new rough data pre-processing approach for the dendritic cell algorithm. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 140–150. Springer, Heidelberg (2013)
Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Transactions on Fuzzy Systems 17, 824–838 (2009)
Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. Kluwer Academic Publishers, Dordrecht (1992)
Asuncion, A., Newman, D.J.: UCI machine learning repository (2007), http://mlearn.ics.uci.edu/mlrepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chelly, Z., Elouedi, Z. (2013). Supporting Fuzzy-Rough Sets in the Dendritic Cell Algorithm Data Pre-processing Phase. In: Lee, M., Hirose, A., Hou, ZG., Kil, R.M. (eds) Neural Information Processing. ICONIP 2013. Lecture Notes in Computer Science, vol 8227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42042-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-42042-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-42041-2
Online ISBN: 978-3-642-42042-9
eBook Packages: Computer ScienceComputer Science (R0)