Factoring Integers by CVP Algorithms | SpringerLink
Skip to main content

Factoring Integers by CVP Algorithms

  • Chapter
Number Theory and Cryptography

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8260))

Abstract

We use pruned enumeration algorithms to find lattice vectors close to a specific target vector for the prime number lattice. These algorithms generate multiplicative prime number relations modulo N that factorize a given integer N. The algorithm New Enum performs the stages of exhaustive enumeration of close lattice vectors in order of decreasing success rate. For example an integer N ≈ 1014 can be factored by about 90 prime number relations modulo N for the 90 smallest primes. Our randomized algorithm generated for example 139 such relations in 15 minutes. This algorithm can be further optimized. The optimization for larger integers N is still open.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.A.: Factoring and lattice reduction. Manuscript (1995)

    Google Scholar 

  2. Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6 (1), 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buchmann, J., Ludwig, C.: Practical lattice basis sampling reduction. eprint.iacr.org, TR 072 (2005)

    Google Scholar 

  4. Charlet, M.: Faktorisierung ganzer Zahlen mit dem NEW ENUM-Gitteralgorithmus. Diplomarbeit, Frankfurt (2013)

    Google Scholar 

  5. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. of Comput. 44, 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Granville, A.: Smooth numbers: computational number theory and beyond. Algorithmic Number Theory 44, 267–323 (2008)

    MathSciNet  Google Scholar 

  9. Hildebrand, A.: Integers free of large prime factors and the Riemann hypothesis. Mathematika 31, 258–271 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Howgrave-Graham, N.: A hybrid lattice–reduction and meet-in-the-middle attiack against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 150–169. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lange, B.: Neue Schranken für SVP-Approximation und SVP-Algorithmen. Dissertation, Frankfurt (2013)

    Google Scholar 

  14. Lenstra Jr., H.W., Lenstra, A.K., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. lOVász, L.: An Algorithmic Theory of Numbers, Graphs and Convexity. SIAM (1986)

    Google Scholar 

  16. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. Kluwer Academic Publishers, Boston (2002)

    Book  Google Scholar 

  17. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest vector problem. ECCC Report No. 65 (2009)

    Google Scholar 

  18. Nguyen, P.Q.: Hermite’s Constant and Lattice Algorithms. In: Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm. Springer (January 2010)

    Google Scholar 

  19. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms. Theoret. Comput. Sci. 53, 201–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schnorr, C.-P.: Factoring integers and computing discrete logarithms via Diophantine approximation. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 281–293. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  21. Schnorr, C.P., Euchner, M.: Lattce basis reduction: Improved practical algorithms and solving subset sum problems. Mathematical Programming 66, 181–199 (1994), http://www.mi.informatik.uni-frankfurt.de/

    Article  MathSciNet  MATH  Google Scholar 

  22. Schnorr, C.-P., Hörner, H.H.: Attacking the Chor–Rivest cryptosystem by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  23. Schnorr, C.P.: Lattice reduction by sampling and birthday methods. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer, Heidelberg (2003), www.mi.informatik.uni-frankfurt.de

    Chapter  Google Scholar 

  24. Schnorr, C.P.: Progress on LLL and lattice reduction. In: Phong, P.Q., Vallée, B. (eds.) Proceedings LLL+25, Caen, France, June 29-July 1. The LLL Algorithm (2007), www.mi.informatik.uni-frankfurt.de/

  25. Schnorr, C.P.: Average Time Fast SVP and CVP Algorithms for Low Density Lattices and the Factorisation of Integers (2010), www.mi.informatik.uni-frankfurt.de

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schnorr, C.P. (2013). Factoring Integers by CVP Algorithms. In: Fischlin, M., Katzenbeisser, S. (eds) Number Theory and Cryptography. Lecture Notes in Computer Science, vol 8260. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42001-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42001-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42000-9

  • Online ISBN: 978-3-642-42001-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics