First-Order Provenance Games | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8000))

Abstract

We propose a new model of provenance, based on a game-theoretic approach to query evaluation. First, we study games G in their own right, and ask how to explain that a position x in G is won, lost, or drawn. The resulting notion of game provenance is closely related to winning strategies, and excludes from provenance all “bad moves”, i.e., those which unnecessarily allow the opponent to improve the outcome of a play. In this way, the value of a position is determined by its game provenance. We then define provenance games by viewing the evaluation of a first-order query as a game between two players who argue whether a tuple is in the query answer. For \(\mathcal{RA}^+\) queries, we show that game provenance is equivalent to the most general semiring of provenance polynomials ℕ[X]. Variants of our game yield other known semirings. However, unlike semiring provenance, game provenance also provides a “built-in” way to handle negation and thus to answer why-not questions: In (provenance) games, the reason why x is not won, is the same as why x is lost or drawn (the latter is possible for games with draws). Since first-order provenance games are draw-free, they yield a new provenance model that combines how- and why-not provenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amsterdamer, Y., Deutch, D., Tannen, V.: Provenance for aggregate queries. In: PODS, pp. 153–164. ACM (2011)

    Google Scholar 

  2. Amsterdamer, Y., Deutch, D., Tannen, V.: On the limitations of provenance for queries with difference. In: Workshop on Theory and Practice of Provenance (TaPP), Heraklion, Crete (2011)

    Google Scholar 

  3. Benjelloun, O., Sarma, A., Halevy, A., Widom, J.: Uldbs: Databases with uncertainty and lineage. In: VLDB, pp. 953–964 (2006)

    Google Scholar 

  4. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Cheney, J., Chiticariu, L., Tan, W.: Provenance in databases: Why, how, and where. Foundations and Trends in Databases 1(4), 379–474 (2009)

    Article  Google Scholar 

  6. Cui, Y., Widom, J., Wiener, J.: Tracing the lineage of view data in a warehousing environment. ACM Transactions on Database Systems (TODS) 25(2), 179–227 (2000)

    Article  Google Scholar 

  7. Flum, J.: Games, kernels, and antitone operations. Order 17(1), 61–73 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flum, J., Kubierschky, M., Ludäscher, B.: Total and partial well-founded datalog coincide. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 113–124. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  9. Flum, J., Kubierschky, M., Ludäscher, B.: Games and total datalog¬ queries. Theoretical Computer Science 239(2), 257–276 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Geerts, F., Poggi, A.: On database query languages for k-relations. Journal of Applied Logic 8(2), 173–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Green, T.: Containment of conjunctive queries on annotated relations. Theory of Computing Systems 49(2), 429–459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Green, T., Ives, Z., Tannen, V.: Reconcilable differences. Theory of Computing Systems 49(2), 460–488 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Green, T., Karvounarakis, G., Ives, Z., Tannen, V.: Update exchange with mappings and provenance. In: VLDB, pp. 675–686 (2007)

    Google Scholar 

  14. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: PODS, pp. 31–40 (2007)

    Google Scholar 

  15. Huang, S., Green, T., Loo, B.: Datalog and emerging applications: an interactive tutorial. In: SIGMOD, pp. 1213–1216 (2011)

    Google Scholar 

  16. Karvounarakis, G., Green, T.J.: Semiring-annotated data: queries and provenance. SIGMOD Record 41(3), 5–14 (2012)

    Article  Google Scholar 

  17. von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100, 295–320 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schwalbe, U., Walker, P.: Zermelo and the early history of game theory. Games and Economic Behavior 34(1), 123–137 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal of Computer and System Sciences 47(1), 185–221 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. Journal of the ACM (JACM) 38(3), 619–649 (1991)

    Article  Google Scholar 

  21. Zermelo, E.: Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In: Fifth Intl. Congress of Mathematicians, vol. 2, pp. 501–504. Cambridge University Press (1913)

    Google Scholar 

  22. Zinn, D., Green, T.J., Ludäscher, B.: Win-move is coordination-free (sometimes). In: Intl. Conf. on Database Theory (ICDT), pp. 99–113 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köhler, S., Ludäscher, B., Zinn, D. (2013). First-Order Provenance Games. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, WC., Fourman, M. (eds) In Search of Elegance in the Theory and Practice of Computation. Lecture Notes in Computer Science, vol 8000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41660-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41660-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41659-0

  • Online ISBN: 978-3-642-41660-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics