A Survey of Cervix Segmentation Methods in Magnetic Resonance Images | SpringerLink
Skip to main content

A Survey of Cervix Segmentation Methods in Magnetic Resonance Images

  • Conference paper
Abdominal Imaging. Computation and Clinical Applications (ABD-MICCAI 2013)

Abstract

Radiotherapy is an effective therapy in the treatment of cervix cancer. However tumor and normal tissue motion and shape deformation of the cervix, the bladder and the rectum over the course of the treatment can limit the efficacy of radiotherapy and safe delivery of the dose. A number of studies have presented the potential benefits of adaptive radiotherapy for cervix cancer with high soft tissue contrast magnetic resonance images. To enable practical implementation of adaptive radiotherapy for the cervix, computer aided segmentation is necessary. Accurate computer aided automatic or semi-automatic segmentation of the cervix is a challenging task due to inter patient shape variation, soft tissue deformation, organ motion, and anatomical changes during the course of the treatment. This article reviews the methods developed for cervix segmentation in magnetic resonance images. The objective of this work is to present different methods for cervix segmentation in the literature highlighting their similarities, differences, strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cervical Cancer Statistics (2013), http://www.cancerresearchuk.org/cancer-info/cancerstats/types/cervical (accessed on June 1, 2013)

  2. Berendsen, F.F., van der Heide, U.A., Langerak, T.R., Kotte, A.N., Pluim, J.P.: Free-form image registration regularized by a statistical shape model: application to organ segmentation in cervical MR. Computer Vision and Image Understanding (2013)

    Google Scholar 

  3. Bondar, L., Hoogeman, M., Mens, J.W., Dhawtal, G., de Pree, I., Ahmad, R., Quint, S., Heijmen, B.: Towards an individualized target motion management for IMRT of cervical cancer based on model-predicted cervix-uterus shape and position. Radiotherapy and Oncology 99, 240–245 (2011)

    Article  Google Scholar 

  4. Chan, P., Dinniwell, R., Haider, M.A., Cho, Y.B., Jaffray, D., Lockwood, G., Levin, W., Manchul, L., Fyles, A., Milosevic, M.: Inter- and intrafractional tumor and organ movement in patients with cervical cancer undergoing radiotherapy: A cinematic-MRI point-of-interest study. International Journal of Radiation Oncology Biology Physics 70, 1507–1515 (2008)

    Article  Google Scholar 

  5. Chandra, S.S., Dowling, J., Shen, K.K., Raniga, P., Pluim, J.P.W., Greer, P.B., Salvado, O., Fripp, J.: Patient specific prostate segmentation in 3D magnetic resonance images. IEEE Trans. Med. Imaging 31(10), 1955–1964 (2012)

    Article  Google Scholar 

  6. Cootes, T.F., Hill, A., Taylor, C.J., Haslam, J.: The Use of Active Shape Model for Locating Structures in Medical Images. Image and Vision Computing 12, 355–366 (1994)

    Article  Google Scholar 

  7. Cremers, D., Osher, S., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. International Journal of Computer Vision 69(3), 335–351 (2006)

    Article  Google Scholar 

  8. Dowling, J., Lambert, J., Parker, J., Salvado, O., Fripp, J., Wratten, C., Capp, A., Denham, J., Greer, P.: An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. International Journal of Radiation Oncology Biology Physics 83, e5–e11 (2012)

    Google Scholar 

  9. Klein, S., van der Heide, U.A., Lipps, I.M., Vulpen, M.V., Staring, M., Pluim, J.P.W.: Automatic Segmentation of the Prostate in 3D MR Images by Atlas Matching Using Localized Mutual Information. Medical Physics 35, 1407–1417 (2008)

    Article  Google Scholar 

  10. Lim, K., Kelly, V., Stewart, J., Xie, J., Cho, Y.B., Moseley, J.B., Brock, K., Fyles, A., Lundin, A., Rehbinder, H., Milosevic, M.: Pelvic radiotherapy for cancer of the cervix: Is what you plan actually what you deliver? International Journal of Radiation Oncology Biology Physics 74, 304–312 (2009)

    Article  Google Scholar 

  11. Lu, C., Chelikani, S., Jaffray, D.A., Milosevic, M.F., Staib, L.H., Duncan, J.S.: Simultaneous nonrigid registration, segmentation, and tumor detection in MRI guided cervical cancer radiation therapy. IEEE Trans. Med. Imaging 31(6), 1213–1227 (2012)

    Article  Google Scholar 

  12. Staring, M., van der Heide, U.A., Klein, S., Viergever, M.A., Pluim, J.P.W.: Registration of cervical MRI using multifeature mutual information. IEEE Trans. Med. Imaging 28(9), 1412–1421 (2009)

    Article  Google Scholar 

  13. Studholme, C., Hill, D.L.J., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 72(1), 71–86 (1999)

    Article  Google Scholar 

  14. Toth, R., Bloch, B.N., Genega, E.M., Rofsky, N.M., Lenkinski, R.E., Rosen, M.A., Kalyanpur, A., Pungavkar, S., Madabhushi, A.: Accurate prostate volume estimation using multifeature active shape models on T2-weighted MR. Academic Radiology 18, 745–754 (2011)

    Article  Google Scholar 

  15. Toth, R., Madabhushi, A.: Multifeature landmark-free active appearance models: Application to prostate MRI segmentation. IEEE Trans. Med. Imaging 31(8), 1638–1650 (2012)

    Article  Google Scholar 

  16. Viswanathan, A., Dimopoulos, J., Kirisits, C., Berger, D., Potter, R.: Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. International Journal of Radiation Oncology Biology Physics 68, 491–498 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghose, S. et al. (2013). A Survey of Cervix Segmentation Methods in Magnetic Resonance Images. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds) Abdominal Imaging. Computation and Clinical Applications. ABD-MICCAI 2013. Lecture Notes in Computer Science, vol 8198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41083-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41083-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41082-6

  • Online ISBN: 978-3-642-41083-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics