Abstract
This paper employs a Liquid State Machine (LSM) to classify inertial sensor data collected from horse riders into activities of interest. Since LSM was shown to be an effective classifier for spatio-temporal data and efficient hardware implementations on custom chips exist, we argue that LSM would be relative easy to integrate into wearable technologies. We explore here the general method of applying LSM technology to domain constrained activity recognition using a real-world data set. The aim of this study is to provide a proof of concept illustrating the applicability of LSM for the chosen problem domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Bohte, S.M., Kok, J.N., Poutré, J.A.L.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1-4), 17–37 (2002)
Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)
Hunt, D.: A heuristic method to distinguish horse rider mounts using a single wrsit mounted inertial sensor. Master’s thesis, Auckland University of Technology, Auckland, New Zealand (2009)
Junker, H., Amft, O., Lukowicz, P., Tröster, G.: Gesture spotting with body-worn inertial sensors to detect user activities. Pattern Recognition 41(6), 2010–2024 (2008)
Lukowicz, P., Ward, J.A., Junker, H., Stäger, M., Tröster, G., Atrash, A., Starner, T.: Recognizing workshop activity using body worn microphones and accelerometers. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 18–32. Springer, Heidelberg (2004)
Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)
Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences 95(9), 5323–5328 (1998)
Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: Method for training a spiking neuron to associate input-output spike trains. In: Iliadis, L., Jayne, C. (eds.) EANN/AIAI 2011, Part I. IFIP AICT, vol. 363, pp. 219–228. Springer, Heidelberg (2011)
Mohemmed, A., Schliebs, S., Matsuda, S., Dhoble, K., Kasabov, N.: Span: Spike pattern association neuron for learning spatio-temporal spike patterns. International Journal on Neural Systems 22, 04 (2012)
Nordlie, E., Gewaltig, M.O., Plesser, H.E.: Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5(8), e1000456 (2009)
Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008, Part I. LNCS, vol. 5506, pp. 1229–1236. Springer, Heidelberg (2009)
Schliebs, S., Fiasché, M., Kasabov, N.: Constructing robust liquid state machines to process highly variable data streams. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 604–611. Springer, Heidelberg (2012)
Schliebs, S., Hunt, D.: Continuous classification of spatio-temporal data streams using liquid state machines. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part IV. LNCS, vol. 7666, pp. 626–633. Springer, Heidelberg (2012)
Schrauwen, B., Van Campenhout, J.: BSA, a fast and accurate spike train encoding scheme. In: Proceedings of the International Joint Conference on Neural Networks, vol. 4, pp. 2825–2830 (July 2003)
Schrauwen, B., D’Haene, M., Verstraeten, D., Campenhout, J.V.: Compact hardware liquid state machines on fpga for real-time speech recognition. Neural Networks 21(2-3), 511–523 (2008)
SparkFun Electronics Inc: IMU 6 degrees of freedom - v4 with bluetooth capability - SparkFun electronics (2008), http://www.sparkfun.com/products/8454
Stiefmeier, T., Ogris, G., Junker, H., Lukowicz, P., Troster, G.: Combining motion sensors and ultrasonic hands tracking for continuous activity recognition in a maintenance scenario. In: 2006 10th IEEE International Symposium on Wearable Computers, pp. 97–104. IEEE (2006)
Zhu, R., Zhou, Z.: A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Transactions on Neural Systems and Rehabilitation Engineering 12(2), 295–302 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schliebs, S., Kasabov, N., Parry, D., Hunt, D. (2013). Towards a Wearable Coach: Classifying Sports Activities with Reservoir Computing. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2013. Communications in Computer and Information Science, vol 383. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41013-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-41013-0_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41012-3
Online ISBN: 978-3-642-41013-0
eBook Packages: Computer ScienceComputer Science (R0)