An Analytical Approach to Single Node Delay-Coupled Reservoir Computing | SpringerLink
Skip to main content

An Analytical Approach to Single Node Delay-Coupled Reservoir Computing

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2013 (ICANN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8131))

Included in the following conference series:

Abstract

Reservoir computing has been successfully applied in difficult time series prediction tasks by injecting an input signal into a spatially extended reservoir of nonlinear subunits to perform history-dependent nonlinear computation. Recently, the network was replaced by a single nonlinear node, delay-coupled to itself. Instead of a spatial topology, subunits are arrayed in time along one delay span of the system. As a result, the reservoir exists only implicitly in a single delay differential equation, numerical solving of which is costly. We derive here approximate analytical equations for the reservoir by solving the underlying system explicitly. The analytical approximation represents the system accurately and yields comparable performance in reservoir benchmark tasks, while reducing computational costs by several orders of magnitude. This has important implications with respect to electronic realizations of the reservoir and opens up new possibilities for optimization and theoretical investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nature Communications 2, 468 (2011)

    Article  Google Scholar 

  2. Herbert Jäger. The “ echo state ” approach to analysing and training recurrent neural networks. Technical report (2001)

    Google Scholar 

  3. Lazar, A., Pipa, G., Triesch, J.: SORN: a self-organizing recurrent neural network. Frontiers in Computational Neuroscience 3 (2009)

    Google Scholar 

  4. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  5. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Texts in Applied Mathematics, vol. 37. Springer, Berlin (2006)

    Google Scholar 

  6. Schrauwen, B., Buesing, L., Legenstein, R.A.: On computational power and the order-chaos phase transition in reservoir computing. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, pp. 1425–1432. Curran Associates, Inc. (2008)

    Google Scholar 

  7. Shampine, L.F., Thompson, S.: Solving ddes in matlab. In: Applied Numerical Mathematics, vol. 37, pp. 441–458 (2001)

    Google Scholar 

  8. Soriano, M.C., Ortín, S., Brunner, D., Larger, L., Mirasso, C.R., Fischer, I., Pesquera, L.: Optoelectronic reservoir computing: tackling noise-induced performance degradation. Optics Express 21(1), 12–20 (2013)

    Article  Google Scholar 

  9. Toutounji, H., Schumacher, J., Pipa, G.: Optimized Temporal Multiplexing for Reservoir Computing with a Single Delay-Coupled Node. In: The 2012 International Symposium on Nonlinear Theory and its Applications, NOLTA 2012 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schumacher, J., Toutounji, H., Pipa, G. (2013). An Analytical Approach to Single Node Delay-Coupled Reservoir Computing. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40728-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40727-7

  • Online ISBN: 978-3-642-40728-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics