Abstract
Reservoir computing has been successfully applied in difficult time series prediction tasks by injecting an input signal into a spatially extended reservoir of nonlinear subunits to perform history-dependent nonlinear computation. Recently, the network was replaced by a single nonlinear node, delay-coupled to itself. Instead of a spatial topology, subunits are arrayed in time along one delay span of the system. As a result, the reservoir exists only implicitly in a single delay differential equation, numerical solving of which is costly. We derive here approximate analytical equations for the reservoir by solving the underlying system explicitly. The analytical approximation represents the system accurately and yields comparable performance in reservoir benchmark tasks, while reducing computational costs by several orders of magnitude. This has important implications with respect to electronic realizations of the reservoir and opens up new possibilities for optimization and theoretical investigation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S., Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using a single dynamical node as complex system. Nature Communications 2, 468 (2011)
Herbert Jäger. The “ echo state ” approach to analysing and training recurrent neural networks. Technical report (2001)
Lazar, A., Pipa, G., Triesch, J.: SORN: a self-organizing recurrent neural network. Frontiers in Computational Neuroscience 3 (2009)
Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)
Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn. Texts in Applied Mathematics, vol. 37. Springer, Berlin (2006)
Schrauwen, B., Buesing, L., Legenstein, R.A.: On computational power and the order-chaos phase transition in reservoir computing. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, pp. 1425–1432. Curran Associates, Inc. (2008)
Shampine, L.F., Thompson, S.: Solving ddes in matlab. In: Applied Numerical Mathematics, vol. 37, pp. 441–458 (2001)
Soriano, M.C., Ortín, S., Brunner, D., Larger, L., Mirasso, C.R., Fischer, I., Pesquera, L.: Optoelectronic reservoir computing: tackling noise-induced performance degradation. Optics Express 21(1), 12–20 (2013)
Toutounji, H., Schumacher, J., Pipa, G.: Optimized Temporal Multiplexing for Reservoir Computing with a Single Delay-Coupled Node. In: The 2012 International Symposium on Nonlinear Theory and its Applications, NOLTA 2012 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schumacher, J., Toutounji, H., Pipa, G. (2013). An Analytical Approach to Single Node Delay-Coupled Reservoir Computing. In: Mladenov, V., Koprinkova-Hristova, P., Palm, G., Villa, A.E.P., Appollini, B., Kasabov, N. (eds) Artificial Neural Networks and Machine Learning – ICANN 2013. ICANN 2013. Lecture Notes in Computer Science, vol 8131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40728-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-40728-4_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40727-7
Online ISBN: 978-3-642-40728-4
eBook Packages: Computer ScienceComputer Science (R0)