Abstract
This paper presents an efficient method for speeding up ant colony optimization (ACO) in solving the color image segmentation problem. The proposed method is inspired by the heuristics of image segmentation to reduce the computation time. To evaluate the performance of the proposed method, we applied the method on well-known test images. Our experimental results shows that the proposed method can significantly reduce the computation time about 19% to 45%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Haralick, R.M., Shapiro, L.G.: Image segmentation techniques. Computer Vision, Graphics, and Image Processing 29(1), 100–132 (1985)
Yu, Z., Au, O.C., Zou, R., Yu, W., Tian, J.: An adaptive unsupervised approach toward pixel clustering and color image segmentation. Pattern Recognition 43(5), 1889–1906 (2010)
Tan, K.S., Isa, N.A.M., Lim, W.H.: Color image segmentation using adaptive unsupervised clustering approach. Applied Soft Computing 13(4), 2017–2036 (2013)
Malik, J., Belongie, S., Leung, T., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vision 43(1), 7–27 (2001)
Bhanu, B., Lee, S., Ming, J.: Adaptive image segmentation using a genetic algorithm. IEEE Transactions on Systems, Man and Cybernetics 25(12), 1543–1567 (1995)
Bellala Belahbib, F.Z., Souami, F.: Color image segmentation by a genetic algorithm based clustering and connected component labeling. In: 2012 24th International Conference on Microelectronics (ICM), pp. 1–4 (2012)
Chander, A., Chatterjee, A., Siarry, P.: A new social and momentum component adaptive pso algorithm for image segmentation. Expert Systems with Applications 38(5), 4998–5004 (2011)
Liang, Y.-C., Chen, A.H.-L., Chyu, C.-C.: Application of a hybrid ant colony optimization for the multilevel thresholding in image processing. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4233, pp. 1183–1192. Springer, Heidelberg (2006)
Tao, W., Jin, H., Liu, L.: Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognition Letters 28(7), 788–796 (2007)
Stuützle, T., Hoos, H.H.: Maxmin ant system. Future Generation Computer Systems 16(8), 889–914 (2000)
Dorigo, M., Stuützle, T.: Ant Colony Optimization. The MIT Press (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tseng, SP., Chiang, MC., Yang, CS. (2014). An Improved ACO by Neighborhood Strategy for Color Image Segmentation. In: Park, J., Adeli, H., Park, N., Woungang, I. (eds) Mobile, Ubiquitous, and Intelligent Computing. Lecture Notes in Electrical Engineering, vol 274. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40675-1_91
Download citation
DOI: https://doi.org/10.1007/978-3-642-40675-1_91
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40674-4
Online ISBN: 978-3-642-40675-1
eBook Packages: EngineeringEngineering (R0)