Abstract
We introduce a multidimensional continued fraction algorithm based on Arnoux-Rauzy and Poincaré algorithms, and we study its associated S-adic system. An S-adic system is made of infinite words generated by the composition of infinite sequences of substitutions with values in a given finite set of substitutions, together with some restrictions concerning the allowed sequences of substitutions, expressed in terms of a regular language. We prove that these words have a factor complexity p(n) with lim sup p(n)/n < 3, which provides a proof for the convergence of the associated algorithm by unique ergodicity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France 119(2), 199–215 (1991)
Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: s-adic expansions (preprint, 2013)
Berthé, V., Labbé, S.: Uniformly balanced words with linear complexity and prescribed letter frequencies. In: Proc. 8th Int. Conf. on Words. EPTCS, vol. 63, pp. 44–52. Open Publishing Association (2011)
Boshernitzan, M.: A unique ergodicity of minimal symbolic flows with linear block growth. J. Analyse Math. 44, 77–96 (1984/1985)
Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4(1), 67–88 (1997); Journées Montoises (Mons, 1994)
Cassaigne, J., Nicolas, F.: Factor complexity. In: Combinatorics, Automata and Number Theory. Encyclopedia Math. Appl., vol. 135, pp. 163–247. Cambridge Univ. Press, Cambridge (2010)
Dasaratha, K., Flapan, L., Garrity, T., Lee, C., Mihaila, C., Neumann-Chun, N., Peluse, S., Stroffregen, M.: Cubic irrationals and periodicity via a family of multi-dimensional continued fraction algorithms. arXiv:1208.4244 (2012)
Durand, F., Leroy, J., Richomme, G.: Do the Properties of an S-adic Representation Determine Factor Complexity? J. of Int. Seq. 16 (2013)
Ferenczi, S., Monteil, T.: Infinite words with uniform frequencies, and invariant measures. In: Combinatorics, Automata and Number Theory. Encycl. Math. Appl., vol. 135, pp. 373–409. Cambridge Univ. Press (2010)
Garrity, T.: On periodic sequences for algebraic numbers. J. Number Theory 88(1), 86–103 (2001)
Klouda, K.: Bispecial factors in circular non-pushy D0L languages. Theoret. Comput. Sci. 445, 63–74 (2012)
Labbé, S.: Structure des pavages, droites discèrtes 3D et combinatoire des mots. PhD thesis, Université du Québec à Montréal (May 2012)
Leroy, J.: Some improvements of the S-adic conjecture. Adv. in Appl. Math. 48(1), 79–98 (2012)
Nogueira, A.: The three-dimensional Poincaré continued fraction algorithm. Israel J. Math. 90(1-3), 373–401 (1995)
Schweiger, F.: Multidimensional continued fractions. Oxford Science Publications. Oxford University Press, Oxford (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berthé, V., Labbé, S. (2013). Convergence and Factor Complexity for the Arnoux-Rauzy-Poincaré Algorithm. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds) Combinatorics on Words. Lecture Notes in Computer Science, vol 8079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40579-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-40579-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40578-5
Online ISBN: 978-3-642-40579-2
eBook Packages: Computer ScienceComputer Science (R0)