Convergence and Factor Complexity for the Arnoux-Rauzy-Poincaré Algorithm | SpringerLink
Skip to main content

Convergence and Factor Complexity for the Arnoux-Rauzy-Poincaré Algorithm

  • Conference paper
Combinatorics on Words

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8079))

  • 513 Accesses

Abstract

We introduce a multidimensional continued fraction algorithm based on Arnoux-Rauzy and Poincaré algorithms, and we study its associated S-adic system. An S-adic system is made of infinite words generated by the composition of infinite sequences of substitutions with values in a given finite set of substitutions, together with some restrictions concerning the allowed sequences of substitutions, expressed in terms of a regular language. We prove that these words have a factor complexity p(n) with lim sup p(n)/n < 3, which provides a proof for the convergence of the associated algorithm by unique ergodicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arnoux, P., Rauzy, G.: Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France 119(2), 199–215 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Berthé, V., Delecroix, V.: Beyond substitutive dynamical systems: s-adic expansions (preprint, 2013)

    Google Scholar 

  3. Berthé, V., Labbé, S.: Uniformly balanced words with linear complexity and prescribed letter frequencies. In: Proc. 8th Int. Conf. on Words. EPTCS, vol. 63, pp. 44–52. Open Publishing Association (2011)

    Google Scholar 

  4. Boshernitzan, M.: A unique ergodicity of minimal symbolic flows with linear block growth. J. Analyse Math. 44, 77–96 (1984/1985)

    Google Scholar 

  5. Cassaigne, J.: Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon Stevin 4(1), 67–88 (1997); Journées Montoises (Mons, 1994)

    Google Scholar 

  6. Cassaigne, J., Nicolas, F.: Factor complexity. In: Combinatorics, Automata and Number Theory. Encyclopedia Math. Appl., vol. 135, pp. 163–247. Cambridge Univ. Press, Cambridge (2010)

    Chapter  Google Scholar 

  7. Dasaratha, K., Flapan, L., Garrity, T., Lee, C., Mihaila, C., Neumann-Chun, N., Peluse, S., Stroffregen, M.: Cubic irrationals and periodicity via a family of multi-dimensional continued fraction algorithms. arXiv:1208.4244 (2012)

    Google Scholar 

  8. Durand, F., Leroy, J., Richomme, G.: Do the Properties of an S-adic Representation Determine Factor Complexity? J. of Int. Seq. 16 (2013)

    Google Scholar 

  9. Ferenczi, S., Monteil, T.: Infinite words with uniform frequencies, and invariant measures. In: Combinatorics, Automata and Number Theory. Encycl. Math. Appl., vol. 135, pp. 373–409. Cambridge Univ. Press (2010)

    Google Scholar 

  10. Garrity, T.: On periodic sequences for algebraic numbers. J. Number Theory 88(1), 86–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klouda, K.: Bispecial factors in circular non-pushy D0L languages. Theoret. Comput. Sci. 445, 63–74 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Labbé, S.: Structure des pavages, droites discèrtes 3D et combinatoire des mots. PhD thesis, Université du Québec à Montréal (May 2012)

    Google Scholar 

  13. Leroy, J.: Some improvements of the S-adic conjecture. Adv. in Appl. Math. 48(1), 79–98 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nogueira, A.: The three-dimensional Poincaré continued fraction algorithm. Israel J. Math. 90(1-3), 373–401 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schweiger, F.: Multidimensional continued fractions. Oxford Science Publications. Oxford University Press, Oxford (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berthé, V., Labbé, S. (2013). Convergence and Factor Complexity for the Arnoux-Rauzy-Poincaré Algorithm. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds) Combinatorics on Words. Lecture Notes in Computer Science, vol 8079. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40579-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40579-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40578-5

  • Online ISBN: 978-3-642-40579-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics