Abstract
In systems biology, an interesting problem is to analyze and characterize the oscillatory and periodic behavior of a chemical reaction system. Traditionally, those systems have been treated deterministically and continuously via ordinary differential equations. In case of high molecule counts with respect to the volume this treatment is justified. But otherwise, stochastic fluctuations can have a high influence on the characteristics of a system as has been shown in recent publications.
In this paper we develop an efficient numerical approach for analyzing the oscillatory and periodic character of user-defined observations on Markov population models (MPMs). MPMs are a special kind of continuous-time Markov chains that allow for a discrete representation of unbounded population counts for several population types and transformations between populations. Examples are chemical species and the reactions between them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrei, O., Calder, M.: Trend-based analysis of a population model of the akap scaffold protein. TCS Biology 14 (2012)
Arkin, A., Ross, J., McAdams, H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected escherichia coli cells. Genetics 149, 1633–1648 (1998)
Baier, C., Hermanns, H., Haverkort, B., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)
Ballarini, P., Guerriero, M.L.: Query-based verification of qualitative trends and oscillations in biochemical systems. TCS 411(20), 2019–2036 (2010)
Ballarini, P., Mardare, R., Mura, I.: Analysing biochemical oscillation through probabilistic model checking. ENTCS 229(1), 3–19 (2009)
Barkai, N., Leibler, S.: Biological rhythms: Circadian clocks limited by noise. Nature 403, 267–268 (2000)
Bortolussi, L., Policriti, A.: The importance of being (a little bit) discrete. ENTCS 229(1), 75–92 (2009)
Dayar, T., Hermanns, H., Spieler, D., Wolf, V.: Bounding the equilibrium distribution of Markov population models. NLAA (2011)
Didier, F., Henzinger, T.A., Mateescu, M., Wolf, V.: Fast adaptive uniformization of the chemical master equation. In: Proc. of HIBI, pp. 118–127. IEEE Computer Society, Washington, DC (2009)
Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)
Gillespie, D.T.: A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)
Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite Markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009)
Júlvez, J., Kwiatkowska, M., Norman, G., Parker, D.: A systematic approach to evaluate sustained stochastic oscillations. In: Proc. BICoB. ISCA (2011)
Kerr, B., Riley, M.A., Feldman, M.W., Bohannan, B.J.M.: Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418 (2002)
Kirkup, B.C., Riley, M.A.: Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428 (2004)
Maroto, M., Monk, N.A.M.: Cellular Oscillatory Mechanisms. Advances in Experimental Medicine and Biology, vol. 641. Springer (2009)
Meyer, K., Wiegand, K., Ward, D., Moustakas, A.: Satchmo: A spatial simulation model of growth, competition, and mortality in cycling savanna patches. Ecological Modelling 209, 377–391 (2007)
Perko, L.: Differential Equations and Dynamical Systems. Texts in Applied Mathematics. Springer (2000)
Reichenbach, T., Mobilia, M., Frey, E.: Coexistence versus extinction in the stochastic cyclic lotka-volterra model. Phys. Rev. E 74, 051907 (2006)
Spieler, D.: Model checking of oscillatory and noisy periodic behavior in Markovian population models. Technical report, Saarland University (2009), Master thesis available at http://mosi.cs.uni-saarland.de/?page_id=93
Stewart, W.J.: Introduction to the numerical solution of Markov chains. Princeton University Press (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spieler, D. (2013). Characterizing Oscillatory and Noisy Periodic Behavior in Markov Population Models. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds) Quantitative Evaluation of Systems. QEST 2013. Lecture Notes in Computer Science, vol 8054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40196-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-40196-1_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40195-4
Online ISBN: 978-3-642-40196-1
eBook Packages: Computer ScienceComputer Science (R0)