Abstract
Landslides are significant natural hazards in many areas of the world. Mapping the areas that are susceptible to landslides is essential for a wise territorial approach and should become a standard tool to support land-use management. A landslide susceptibility map indicates landslide-prone areas by considering the predisposing factors of slope failures in the past. In the presented work, we evaluate the landslide susceptibility of the urban area of Senise and San Costantino Albanese towns (Basilicata, southern Italy) using an Artificial Neural Network (ANN). In order, this method has required the definition of appropriate thematic layers, which parameterize the area under study. To evaluate and validate landslide susceptibility, the landslides have been randomly divided into two groups, each representing the 50% of the total area subject to instability. The results of this research show that most of the investigated area is characterized by a high landslide hazard.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Almagià, R.: Studi Geografici sopra le frane in Italia. In: L’Appennino centrale e meridionale - conclusioni generali, vol. II, 14, p. 435. Società Geografica Italiana, Roma (1910)
Varnes, D.J.: International Association of Engineering Geology Commission on Landslides and Other Mass Movements: Landslide hazard zonation: A review of principles and practice. In: Natural Hazards, vol. 3, p. 63. UNESCO, Paris (1984)
Schiattarella, M., Giannandrea, P., Giano, S.I., Pinto, F.: Note illustrative della Carta Geologica d’Italia alla scala 1:50.000 foglio 522 Senise (2011)
Cruden, D.M., Varnes, D.J.: Landslides types and processes. In: “Landslides: investigation and mitigation”. Spec. Rep. 176, Transp. Res. Board, Nat. Ac. of Sc., Washington (1994)
Caniani, D., Pascale, S., Sdao, F., Sole, A.: Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Natural Hazards, Springer ed. 45, 55–72 (2008)
Sdao, F., Lioi, D.S., Pascale, S., Caniani, D., Mancini, I.M.: Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera. Nat. Hazards Earth Syst. Sci. 13, 395–407 (2013), doi:10.5194/nhess-13-395-2013
Dai, F.C., Lee, C.F., Li, J., Xu, Z.W.: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ. Geol. 40, 381–391 (2001)
Cevik, E., Topal, T.: GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 44, 949–962 (2003)
Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichenbach, R.: Comparing landslide inventory maps. Geomorphology 94, 268–289 (2008)
Komac, M.: A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1–4), 17–28 (2006)
Wilson, J.P., Gallant, J.C.: Terrain analysis principles and applications. Wiley, New York www.em-dat.net EM-DAT: The OFDA/CRED International Disaster Database. Universite Catholique de Louvain, Brussels, Belgium (2000)
Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H.: An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology 97, 171–171 (2008)
Mejia-Navarro, M., Garcia, L.A.: Natural hazard and risk assessment using decision support system, application: Glenwood Springers, Colorado. Environ. Eng. Geosci. 2(3), 299–324 (1996)
Pachauri, A.K., Gupta, P.V., Chander, R.: Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology 36, 325–334 (1998)
Luzi, L., Pergalani, F.: Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia-Italy). Natural Hazard 20(1), 57–82 (1999)
Cumer, A.: Il progetto CORINE Land Cover in Italia: un modello da seguire. Documenti del Territorio Anno VIII N. 28/29 (1994)
Moore, I.D., Grayson, R.B., Ladson, A.R.: Digital terrain modelling: a reviewof hydrological, geomorphological, and biological applications. Hydrological Processes 5, 3–30 (1991)
Aleotti, P., Chowdhury, R.: Landslide hazard assessment: summary review and new perspectives. Bull. Eng. Geol. Environ. 58, 21–44 (1999)
Lee, S., Ryu, J.H., Won, J.S., Park, H.J.: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng. Geol. 71, 289–302 (2004)
Bishop, C.M.: Neural Networks for Pattern Recognition, 1st edn. Oxford University Press, USA (1996)
McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)
Turban, E., Aronson, J.E.: Decision Support Systems and Intelligent Systems. In: Graupe, D. (ed.). Prentice Hall (2001); Principles of Artificial Neural Networks. World Scientific Publishing (2001)
Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F.: Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg, F.P., Bonham-Carter, G.F. (eds.) Statistical Applications in the Earth Sciences, Geological Survey of Canada, pp. 171–183 (1994)
Zweig, M.H., Campbell, G.: Receiver-operating characteristics(ROC) plots. Clinical Chemistry 39, 561–577 (1993)
Eastman, J.R.: Idrisi Taiga, guide to GIS and image processing, user’s guide (Ver. 15), p. 328. Press Clark University, USA (2009)
Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 204, 1285–1293 (1988)
Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006)
Conforti, M., Robustelli, G., Muto, F., Critelli, S.: Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy). Natural Hazards 61, 127–141 (2012)
Lucà, F., Conforti, M., Robustelli, G.: Comparison of GIS based gullying susceptibility mapping using bivariate and multivariate statistics in Northern Calabria (South Italy). Geomorphology 134, 297–308 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pascale, S. et al. (2013). Landslide Susceptibility Mapping Using Artificial Neural Network in the Urban Area of Senise and San Costantino Albanese (Basilicata, Southern Italy). In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39649-6_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-39649-6_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39648-9
Online ISBN: 978-3-642-39649-6
eBook Packages: Computer ScienceComputer Science (R0)