Landslide Susceptibility Mapping Using Artificial Neural Network in the Urban Area of Senise and San Costantino Albanese (Basilicata, Southern Italy) | SpringerLink
Skip to main content

Landslide Susceptibility Mapping Using Artificial Neural Network in the Urban Area of Senise and San Costantino Albanese (Basilicata, Southern Italy)

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Abstract

Landslides are significant natural hazards in many areas of the world. Mapping the areas that are susceptible to landslides is essential for a wise territorial approach and should become a standard tool to support land-use management. A landslide susceptibility map indicates landslide-prone areas by considering the predisposing factors of slope failures in the past. In the presented work, we evaluate the landslide susceptibility of the urban area of Senise and San Costantino Albanese towns (Basilicata, southern Italy) using an Artificial Neural Network (ANN). In order, this method has required the definition of appropriate thematic layers, which parameterize the area under study. To evaluate and validate landslide susceptibility, the landslides have been randomly divided into two groups, each representing the 50% of the total area subject to instability. The results of this research show that most of the investigated area is characterized by a high landslide hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almagià, R.: Studi Geografici sopra le frane in Italia. In: L’Appennino centrale e meridionale - conclusioni generali, vol. II, 14, p. 435. Società Geografica Italiana, Roma (1910)

    Google Scholar 

  2. Varnes, D.J.: International Association of Engineering Geology Commission on Landslides and Other Mass Movements: Landslide hazard zonation: A review of principles and practice. In: Natural Hazards, vol. 3, p. 63. UNESCO, Paris (1984)

    Google Scholar 

  3. Schiattarella, M., Giannandrea, P., Giano, S.I., Pinto, F.: Note illustrative della Carta Geologica d’Italia alla scala 1:50.000 foglio 522 Senise (2011)

    Google Scholar 

  4. Cruden, D.M., Varnes, D.J.: Landslides types and processes. In: “Landslides: investigation and mitigation”. Spec. Rep. 176, Transp. Res. Board, Nat. Ac. of Sc., Washington (1994)

    Google Scholar 

  5. Caniani, D., Pascale, S., Sdao, F., Sole, A.: Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Natural Hazards, Springer ed. 45, 55–72 (2008)

    Article  Google Scholar 

  6. Sdao, F., Lioi, D.S., Pascale, S., Caniani, D., Mancini, I.M.: Landslide susceptibility assessment by using a neuro-fuzzy model: a case study in the Rupestrian heritage rich area of Matera. Nat. Hazards Earth Syst. Sci. 13, 395–407 (2013), doi:10.5194/nhess-13-395-2013

    Article  Google Scholar 

  7. Dai, F.C., Lee, C.F., Li, J., Xu, Z.W.: Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ. Geol. 40, 381–391 (2001)

    Article  Google Scholar 

  8. Cevik, E., Topal, T.: GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ. Geol. 44, 949–962 (2003)

    Article  Google Scholar 

  9. Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., Reichenbach, R.: Comparing landslide inventory maps. Geomorphology 94, 268–289 (2008)

    Article  Google Scholar 

  10. Komac, M.: A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1–4), 17–28 (2006)

    Article  Google Scholar 

  11. Wilson, J.P., Gallant, J.C.: Terrain analysis principles and applications. Wiley, New York www.em-dat.net EM-DAT: The OFDA/CRED International Disaster Database. Universite Catholique de Louvain, Brussels, Belgium (2000)

    Google Scholar 

  12. Nefeslioglu, H.A., Gokceoglu, C., Sonmez, H.: An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology 97, 171–171 (2008)

    Article  Google Scholar 

  13. Mejia-Navarro, M., Garcia, L.A.: Natural hazard and risk assessment using decision support system, application: Glenwood Springers, Colorado. Environ. Eng. Geosci. 2(3), 299–324 (1996)

    Google Scholar 

  14. Pachauri, A.K., Gupta, P.V., Chander, R.: Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology 36, 325–334 (1998)

    Article  Google Scholar 

  15. Luzi, L., Pergalani, F.: Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia-Italy). Natural Hazard 20(1), 57–82 (1999)

    Article  Google Scholar 

  16. Cumer, A.: Il progetto CORINE Land Cover in Italia: un modello da seguire. Documenti del Territorio Anno VIII N. 28/29 (1994)

    Google Scholar 

  17. Moore, I.D., Grayson, R.B., Ladson, A.R.: Digital terrain modelling: a reviewof hydrological, geomorphological, and biological applications. Hydrological Processes 5, 3–30 (1991)

    Article  Google Scholar 

  18. Aleotti, P., Chowdhury, R.: Landslide hazard assessment: summary review and new perspectives. Bull. Eng. Geol. Environ. 58, 21–44 (1999)

    Article  Google Scholar 

  19. Lee, S., Ryu, J.H., Won, J.S., Park, H.J.: Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng. Geol. 71, 289–302 (2004)

    Article  Google Scholar 

  20. Bishop, C.M.: Neural Networks for Pattern Recognition, 1st edn. Oxford University Press, USA (1996)

    MATH  Google Scholar 

  21. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  22. Turban, E., Aronson, J.E.: Decision Support Systems and Intelligent Systems. In: Graupe, D. (ed.). Prentice Hall (2001); Principles of Artificial Neural Networks. World Scientific Publishing (2001)

    Google Scholar 

  23. Bonham-Carter, G.F., Agterberg, F.P., Wright, D.F.: Weights of evidence modelling: a new approach to mapping mineral potential. In: Agterberg, F.P., Bonham-Carter, G.F. (eds.) Statistical Applications in the Earth Sciences, Geological Survey of Canada, pp. 171–183 (1994)

    Google Scholar 

  24. Zweig, M.H., Campbell, G.: Receiver-operating characteristics(ROC) plots. Clinical Chemistry 39, 561–577 (1993)

    Google Scholar 

  25. Eastman, J.R.: Idrisi Taiga, guide to GIS and image processing, user’s guide (Ver. 15), p. 328. Press Clark University, USA (2009)

    Google Scholar 

  26. Swets, J.A.: Measuring the accuracy of diagnostic systems. Science 204, 1285–1293 (1988)

    Article  MathSciNet  Google Scholar 

  27. Fawcett, T.: An introduction to ROC analysis. Pattern Recognition Letters 27, 861–874 (2006)

    Article  Google Scholar 

  28. Conforti, M., Robustelli, G., Muto, F., Critelli, S.: Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy). Natural Hazards 61, 127–141 (2012)

    Article  Google Scholar 

  29. Lucà, F., Conforti, M., Robustelli, G.: Comparison of GIS based gullying susceptibility mapping using bivariate and multivariate statistics in Northern Calabria (South Italy). Geomorphology 134, 297–308 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pascale, S. et al. (2013). Landslide Susceptibility Mapping Using Artificial Neural Network in the Urban Area of Senise and San Costantino Albanese (Basilicata, Southern Italy). In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39649-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39649-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39648-9

  • Online ISBN: 978-3-642-39649-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics