Data Usability Processor for Optical Remote Sensing Imagery: Design and Implementation into an Automated Processing Chain | SpringerLink
Skip to main content

Data Usability Processor for Optical Remote Sensing Imagery: Design and Implementation into an Automated Processing Chain

  • Conference paper
Computational Science and Its Applications – ICCSA 2013 (ICCSA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7972))

Included in the following conference series:

  • 2149 Accesses

Abstract

A range of global environmental and social problems, such as climate change or social transformation processes, are aggravated by diverse anthropogenic impacts. To monitor, analyse and combating these processes, topical information on the status, development, spatial and temporal dynamics of them is an indispensable prerequisite. The growing, frequently rapid demand for global and regional data in relevant geographical, geometric, semantic and temporal resolution can only be met by remote sensing data the majority of which are available on an operational scale. Not only does the availability of data present a major obstacle for the above applications, but also rapid processing of the acquired remote sensing data is a severe bottleneck for the provision of the required data for, e.g. time-critical investigations. These problems can be addressed by developing an automated processing chain to derive value-added data producing from the remote sensing input data. Effective automated data processing necessitates a data quality assessment prior to actual processing. This paper deals with a processor for an automated data usability assessment that can be integrated into an automated processing chain for operative value adding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. European Commission, http://ec.europa.eu/enterprise/policies/space/gmes/ (last access: August 6, 2012)

  2. Borg, E., Fichtelmann, B., Asche, H.: Assessment for Remote Sensing Data: Accuracy of Interactive Data Quality Interpretation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp. 366–375. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Borg, E., Fichtelmann, B., Asche, H.: Cloud classification in JPEG-compressed remote sensing data (LANDSAT 7/ETM+). In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part II. LNCS, vol. 7334, pp. 347–357. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Lau, W.-L., Li, Z.-L., Lam, K.W.-K.: Effects of JPEG compression on image classification. Int. J. Remote Sensing 24(7), 1535–1544 (2003)

    Article  Google Scholar 

  5. Beruti, V.: LANDSAT 7 ESA Stations Network Report - Focus on Product Generation, LTWG 11, LANDSAT Technical Working Group Meeting (USGS/NASA), Camberra, Australia, February 4-8, p. 21 (2002)

    Google Scholar 

  6. Bettac, H.-D., Reiniger, K., Brieß, K., Borg, E.: DLR/DFD presentation to the LGSOWG-30 Meeting, LGSOWG Meeting, Orlando, Florida, USA, November 12-15, p. 22 (2001)

    Google Scholar 

  7. Pollex, J.: Oral Communication (2001)

    Google Scholar 

  8. Schwarz, J., Bettac, H.D., Missling, K.-D.: Das DFD-Bodensegment für LANDSAT-7. In: Mehl, H., Dech, S. (eds.) DLR-Mitteilung 1999-03, Wessling, Germany, October 20-21, pp. 49–56 (2000)

    Google Scholar 

  9. Biasutti, R.: Cloud Cover Evaluation, LTWG 8, LANDSAT Technical Working Group Meeting (USGS/NASA), Ottawa, Canada, July 17-22, p. 10 (2000)

    Google Scholar 

  10. Richter, R., Schläpfer, D.: Atmospheric/topographic correction for satellite imagery. In: DLR Report DLR-IB 565-02/11, Wessling, Germany, p. 202 (2011)

    Google Scholar 

  11. Huang, L., Li, Z.: Feature-based image registration using the shape context. International Journal of Remote Sensing 31(8), 2169–2177 (2010)

    Article  Google Scholar 

  12. Borg, E., Fichtelmann, B., Böttcher, J., Günther, A.: Processing of remote sensing data. EP 1 637 838 B1 (2009)

    Google Scholar 

  13. Borg, E., Fichtelmann, B.: Verfahren und Vorrichtung zum Feststellen einer Nutzbarkeit von Fernerkundungsdaten. Deutsches Patent Nr. 10 2004 024 595 B3 (2004)

    Google Scholar 

  14. NASA (2011), http://landsathandbook.gsfc.nasa.gov/ (last access: August 6, 2012)

  15. Irish, R.: LANDSAT 7 Automatic Cloud Cover Assessment. In: Sylvia, S.S., Descour, M.R. (eds.) Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Proceedings of SPIE, vol. 4049, pp. 348–355 (2000)

    Google Scholar 

  16. Xu, Q., Wu, W.: ACRES Automatic Cloud Cover Assessment of LANDSAT 7 Images. In: Spatial Sciences Conference 2003 – Spatial Knowledge Without Boundaries Canberra, September 23-26, p. 10 (2003)

    Google Scholar 

  17. Slater, P.N., Biggar, S.F., Holm, R.G., Jackson, R.D., Mao, Y., Moran, M.S., Palmer, J.M., Yuan, B.: Reflectance and Radiance-Based Methods for the In-Flight Absolute Calibration of Multispectral Sensors. Remote Sens. Environ. 22(1), 11–37 (1987)

    Article  Google Scholar 

  18. Markham, B.L., Barker, J.L.: Spectral characterization of the LANDSAT Thematic Mapper Sensors. Int. J. Remote Sensing 6(5), 697–716 (1985)

    Article  Google Scholar 

  19. Chander, G., Markham, B.L., Helder, D.L.: Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 113(5), 893–903 (2009), http://landportal.gsfc.nasa.gov/Documents/Landsat_Calibration_Summary.pdf (last access: February 20, 2012)

  20. Gurney, R.J., Hall, D.K.: Satellite-derived surface energy balance estimates in the Alaskan Sub-Arctic. J. Clim. Appl. Meteor. 22(1), 115–125 (1983)

    Article  Google Scholar 

  21. Gellert, W., Küstner, H., Mellwich, M., Kästner, H.: Mathematik –, p. 837. Kleine Enzyklopädie, Verlag Enzy-klopädie, Leipzig (1970)

    Google Scholar 

  22. Wu, Z.-J., McAvaney, B.: Sampling methods for climate model calculated brightness temperatures. BMRC Research Report No. 118, Bureau of Meteorology Research Centre, Australia, p. 43 (2006), http://cawcr.gov.au/bmrc/pubs/researchreports/RR117.pdf (last access: March 1, 2013)

  23. Ignatov, A., Lazlo, I., Harrod, E.D., Kidwell, K.B., Goodrum, G.P.: Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. International Journal of Remote Sensing 25(23), 5255–5266 (2004)

    Article  Google Scholar 

  24. Johnson, D.B., Flament, P., Bernstein, R.L.: High-resolution satellite imagery for mesoscale meteorological studies. Bulletin of the American Meteorological Society 75, 5–34 (1994)

    Article  Google Scholar 

  25. Mears, A.M., Schabel, M.C., Wentz, F.J., Santer, B.D., Govindasamy, B.: Correcting the MSU middle tropospheric temperature for diurnal drifts. In: International Geophysics and Remote Sensing Symposium 2002, vol. III, pp. 1839–1841 (2002)

    Google Scholar 

  26. Duffett-Smith, P.: Practical astronomy with your calculator, 3rd edn., p. 188. Cambridge University Press (1988)

    Google Scholar 

  27. AGI Company: Software (2004), http://www.agi.com/default.aspx

  28. Fichtelmann, B., Borg, E., Kriegel, M.: Verfahren zur operationellen Bereitstellung von Zusatzdaten für die automatische Fernerkundungsdatenverarbeitung. In: Strobl, J., Blaschke, T., Griesebner, G. (eds.) 23. AGIT-Symposium, Salzburg, pp. 12–20. Wichmann, Berlin (2011)

    Google Scholar 

  29. Lehmann, T., Oberschelp, W., Pelikan, E., Repges, R.: Bildverarbeitung für die Medizin–Grundlagen, Modelle, Methoden, Anwendungen, p. 462. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  30. Haberäcker, P.: Praxis der digitalen Bildverarbeitung und Mustererkennung, p. 350. Hanser, München (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borg, E., Fichtelmann, B., Asche, H. (2013). Data Usability Processor for Optical Remote Sensing Imagery: Design and Implementation into an Automated Processing Chain. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39643-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39642-7

  • Online ISBN: 978-3-642-39643-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics