Abstract
A range of global environmental and social problems, such as climate change or social transformation processes, are aggravated by diverse anthropogenic impacts. To monitor, analyse and combating these processes, topical information on the status, development, spatial and temporal dynamics of them is an indispensable prerequisite. The growing, frequently rapid demand for global and regional data in relevant geographical, geometric, semantic and temporal resolution can only be met by remote sensing data the majority of which are available on an operational scale. Not only does the availability of data present a major obstacle for the above applications, but also rapid processing of the acquired remote sensing data is a severe bottleneck for the provision of the required data for, e.g. time-critical investigations. These problems can be addressed by developing an automated processing chain to derive value-added data producing from the remote sensing input data. Effective automated data processing necessitates a data quality assessment prior to actual processing. This paper deals with a processor for an automated data usability assessment that can be integrated into an automated processing chain for operative value adding.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
European Commission, http://ec.europa.eu/enterprise/policies/space/gmes/ (last access: August 6, 2012)
Borg, E., Fichtelmann, B., Asche, H.: Assessment for Remote Sensing Data: Accuracy of Interactive Data Quality Interpretation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp. 366–375. Springer, Heidelberg (2011)
Borg, E., Fichtelmann, B., Asche, H.: Cloud classification in JPEG-compressed remote sensing data (LANDSAT 7/ETM+). In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part II. LNCS, vol. 7334, pp. 347–357. Springer, Heidelberg (2012)
Lau, W.-L., Li, Z.-L., Lam, K.W.-K.: Effects of JPEG compression on image classification. Int. J. Remote Sensing 24(7), 1535–1544 (2003)
Beruti, V.: LANDSAT 7 ESA Stations Network Report - Focus on Product Generation, LTWG 11, LANDSAT Technical Working Group Meeting (USGS/NASA), Camberra, Australia, February 4-8, p. 21 (2002)
Bettac, H.-D., Reiniger, K., Brieß, K., Borg, E.: DLR/DFD presentation to the LGSOWG-30 Meeting, LGSOWG Meeting, Orlando, Florida, USA, November 12-15, p. 22 (2001)
Pollex, J.: Oral Communication (2001)
Schwarz, J., Bettac, H.D., Missling, K.-D.: Das DFD-Bodensegment für LANDSAT-7. In: Mehl, H., Dech, S. (eds.) DLR-Mitteilung 1999-03, Wessling, Germany, October 20-21, pp. 49–56 (2000)
Biasutti, R.: Cloud Cover Evaluation, LTWG 8, LANDSAT Technical Working Group Meeting (USGS/NASA), Ottawa, Canada, July 17-22, p. 10 (2000)
Richter, R., Schläpfer, D.: Atmospheric/topographic correction for satellite imagery. In: DLR Report DLR-IB 565-02/11, Wessling, Germany, p. 202 (2011)
Huang, L., Li, Z.: Feature-based image registration using the shape context. International Journal of Remote Sensing 31(8), 2169–2177 (2010)
Borg, E., Fichtelmann, B., Böttcher, J., Günther, A.: Processing of remote sensing data. EP 1 637 838 B1 (2009)
Borg, E., Fichtelmann, B.: Verfahren und Vorrichtung zum Feststellen einer Nutzbarkeit von Fernerkundungsdaten. Deutsches Patent Nr. 10 2004 024 595 B3 (2004)
NASA (2011), http://landsathandbook.gsfc.nasa.gov/ (last access: August 6, 2012)
Irish, R.: LANDSAT 7 Automatic Cloud Cover Assessment. In: Sylvia, S.S., Descour, M.R. (eds.) Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Proceedings of SPIE, vol. 4049, pp. 348–355 (2000)
Xu, Q., Wu, W.: ACRES Automatic Cloud Cover Assessment of LANDSAT 7 Images. In: Spatial Sciences Conference 2003 – Spatial Knowledge Without Boundaries Canberra, September 23-26, p. 10 (2003)
Slater, P.N., Biggar, S.F., Holm, R.G., Jackson, R.D., Mao, Y., Moran, M.S., Palmer, J.M., Yuan, B.: Reflectance and Radiance-Based Methods for the In-Flight Absolute Calibration of Multispectral Sensors. Remote Sens. Environ. 22(1), 11–37 (1987)
Markham, B.L., Barker, J.L.: Spectral characterization of the LANDSAT Thematic Mapper Sensors. Int. J. Remote Sensing 6(5), 697–716 (1985)
Chander, G., Markham, B.L., Helder, D.L.: Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 113(5), 893–903 (2009), http://landportal.gsfc.nasa.gov/Documents/Landsat_Calibration_Summary.pdf (last access: February 20, 2012)
Gurney, R.J., Hall, D.K.: Satellite-derived surface energy balance estimates in the Alaskan Sub-Arctic. J. Clim. Appl. Meteor. 22(1), 115–125 (1983)
Gellert, W., Küstner, H., Mellwich, M., Kästner, H.: Mathematik –, p. 837. Kleine Enzyklopädie, Verlag Enzy-klopädie, Leipzig (1970)
Wu, Z.-J., McAvaney, B.: Sampling methods for climate model calculated brightness temperatures. BMRC Research Report No. 118, Bureau of Meteorology Research Centre, Australia, p. 43 (2006), http://cawcr.gov.au/bmrc/pubs/researchreports/RR117.pdf (last access: March 1, 2013)
Ignatov, A., Lazlo, I., Harrod, E.D., Kidwell, K.B., Goodrum, G.P.: Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. International Journal of Remote Sensing 25(23), 5255–5266 (2004)
Johnson, D.B., Flament, P., Bernstein, R.L.: High-resolution satellite imagery for mesoscale meteorological studies. Bulletin of the American Meteorological Society 75, 5–34 (1994)
Mears, A.M., Schabel, M.C., Wentz, F.J., Santer, B.D., Govindasamy, B.: Correcting the MSU middle tropospheric temperature for diurnal drifts. In: International Geophysics and Remote Sensing Symposium 2002, vol. III, pp. 1839–1841 (2002)
Duffett-Smith, P.: Practical astronomy with your calculator, 3rd edn., p. 188. Cambridge University Press (1988)
AGI Company: Software (2004), http://www.agi.com/default.aspx
Fichtelmann, B., Borg, E., Kriegel, M.: Verfahren zur operationellen Bereitstellung von Zusatzdaten für die automatische Fernerkundungsdatenverarbeitung. In: Strobl, J., Blaschke, T., Griesebner, G. (eds.) 23. AGIT-Symposium, Salzburg, pp. 12–20. Wichmann, Berlin (2011)
Lehmann, T., Oberschelp, W., Pelikan, E., Repges, R.: Bildverarbeitung für die Medizin–Grundlagen, Modelle, Methoden, Anwendungen, p. 462. Springer, Heidelberg (1997)
Haberäcker, P.: Praxis der digitalen Bildverarbeitung und Mustererkennung, p. 350. Hanser, München (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Borg, E., Fichtelmann, B., Asche, H. (2013). Data Usability Processor for Optical Remote Sensing Imagery: Design and Implementation into an Automated Processing Chain. In: Murgante, B., et al. Computational Science and Its Applications – ICCSA 2013. ICCSA 2013. Lecture Notes in Computer Science, vol 7972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39643-4_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-39643-4_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-39642-7
Online ISBN: 978-3-642-39643-4
eBook Packages: Computer ScienceComputer Science (R0)