Information Transfer Characteristic in Memristic Neuromorphic Network | SpringerLink
Skip to main content

Information Transfer Characteristic in Memristic Neuromorphic Network

  • Conference paper
Advances in Neural Networks – ISNN 2013 (ISNN 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7951))

Included in the following conference series:

Abstract

Memristive nanodevices can support exactly the same learning function as spike-timing-dependent plasticity in neuroscience, and thus the exploration for the evolution and self-organized computing of memristor-based neuromorphic networks becomes reality. We mainly study the STDP-driven refinement effect on memristor-based crossbar structure and its information transfer characteristic. The results show that self-organized refinement could enhance the information transfer of memristor crossbar, and the dependence of memristive device on current direction and the balance between potentiation and depression are of crucial importance. This gives an inspiration for resolving the power consumption issue and the so called sneak path problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The Missing Memristor Found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  2. Chua, L.O.: Memristor-The Missing Circuit Element. IEEE Trans. Circuits Syst. 18, 507–519 (1971)

    Google Scholar 

  3. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale Memristor Device as Synapse in Neuromorphic Systems. Nano Lett. 10, 1297–1301 (2010)

    Article  Google Scholar 

  4. Kuzum, D., Jeyasingh, R.G.D., Lee, B., Wong, H.-S.P.: Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing. Nano Lett. 12, 2179–2186 (2012)

    Article  Google Scholar 

  5. Ohno, T., et al.: Short-Term Plasticity and Long-Term Potentiation Mimicked in Single Inorganic Synapses. Nat. Mater. 10, 591–595 (2011)

    Article  Google Scholar 

  6. Likharev, K.K.: CrossNets: Neuromorphic Hybrid CMOS/Nanoelectronic Networks. Sci. Adv. Mater. 3, 322–331 (2011)

    Article  Google Scholar 

  7. Snider, G.S.: Self-Organized Computation with Unreliable, Memristive Nanodevices. Nanotechnology 18, 365202 (2007)

    Article  Google Scholar 

  8. Zamarreno-Ramos, C., et al.: On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex. Front Neurosci. 5, 26–47 (2011)

    Article  Google Scholar 

  9. Flocke, A., Noll, T.G.: Fundamental Analysis of Resistive Nano-Crossbars for the Use in Hybrid Nano/CMOS-Memory. In: Proc. 33rd Eur. Solid-State Circuits Conf., pp. 328–331 (2007)

    Google Scholar 

  10. Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R.: High Density 3D Memory Architecture Based on the Resistive Switching Effect. Solid-State Electronics 53, 1287–1292 (2009)

    Article  Google Scholar 

  11. SyNAPSE: Systems of Neuromorphic Adaptive Plastic Scalable Electronics, http://www.darpa.mil

  12. Strukov, D.B.: Nanotechnology: Smart connections. Nature 476, 403–405 (2011)

    Article  Google Scholar 

  13. Shin, C.-W., Kim, S.: Self-Organized Criticality and Scale-Free Properties in Emergent Functional Neural Networks. Phys. Rev. E 74, 045101 (2006)

    Article  Google Scholar 

  14. Jost, J., Kolwankar, K.M.: Evolution of Network Structure by Temporal Learning. Phys. A 388, 1959–1966 (2009)

    Article  Google Scholar 

  15. Takahashi, Y.K., Kori, H., Masuda, N.: Self-Organization of Feed-Forward Structure and Entrainment in Excitatory Neural Networks with Spike-Timing-Dependent Plasticity. Phys. Rev. E 79, 051904 (2009)

    Article  MathSciNet  Google Scholar 

  16. Ren, Q., Kolwankar, K.M., Samal, A., Jost, J.: STDP-Driven Networks and The C. elegans Neuronal Network. Physica A 389, 3900–3914 (2010)

    Article  Google Scholar 

  17. Strong, S.P., Koberle, R., van Steveninck, R.R.R., Bialek, W.: Entropy and Information in Neural Spike Trains. Phys. Rev. Lett. 80, 197–200 (1998)

    Article  Google Scholar 

  18. Hennequin, G., Gerstner, W., Pfister, J.-P.: STDP in Adaptive Neurons Gives Close-To-Optimal Information Transmission. Front. Comput. Neurosci. 4, 143–158 (2010)

    Article  Google Scholar 

  19. Borst, A., Theunissen, F.E.: Information Theory and Neural Coding. Nat. Neurosci. 2, 947–957 (1999)

    Article  Google Scholar 

  20. Kennel, M.B., Shlens, J., Abarbanel, H.D.I., Chichilnisky, E.J.: Estimating Entropy Rates with Bayesian Confidence Intervals. Neural Comput. 7, 1531–1576 (2005)

    Article  MathSciNet  Google Scholar 

  21. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian Learning Through Spike-Timing-Dependent Synaptic Plasticity. Nat. Neurosci. 3, 919–954 (2000)

    Article  Google Scholar 

  22. Brunel, N., Hakim, V.: Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with Low Firing Rates. Neural Comput. 11, 1621–1671 (1999)

    Article  Google Scholar 

  23. Bi, G., Poo, M.: Synaptic Modification by Correlated Activity: Hebb’s Postulate Revisited. Annu. Rev. Neurosci. 24, 139–166 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ren, Q., Long, Q., Zhang, Z., Zhao, J. (2013). Information Transfer Characteristic in Memristic Neuromorphic Network. In: Guo, C., Hou, ZG., Zeng, Z. (eds) Advances in Neural Networks – ISNN 2013. ISNN 2013. Lecture Notes in Computer Science, vol 7951. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39065-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39065-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39064-7

  • Online ISBN: 978-3-642-39065-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics