Ultrametric Finite Automata and Turing Machines | SpringerLink
Skip to main content

Ultrametric Finite Automata and Turing Machines

  • Conference paper
Developments in Language Theory (DLT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7907))

Included in the following conference series:

Abstract

We introduce a notion of ultrametric automata and Turing machines using p-adic numbers to describe random branching of the process of computation. These automata have properties similar to the properties of probabilistic automata but complexity of probabilistic automata and complexity of ultrametric automata can differ very much.

The research was supported by Project 271/2012 from the Latvian Council of Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  2. Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Mat. Sem. Univ. Hamburg, B.5, 353–363 (1927)

    Google Scholar 

  3. Dragovich, B., Dragovich, A.: A p-Adic Model of DNA Sequence and Genetic Code. p-Adic Numbers, Ultrametric Analysis, and Applications 1(1), 34–41 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory, pp. 473–503. North-Holland, Amsterdam (1999)

    Chapter  Google Scholar 

  5. Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  6. Freivalds, R.: How to Simulate Free Will in a Computational Device. ACM Computing Surveys 31(3), 15 (1999)

    Article  MathSciNet  Google Scholar 

  7. Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Freivalds, R.: Ultrametric automata and Turing machines. In: Voronkov, A. (ed.) Turing-100. EPiC Series, vol. 10, pp. 98–112. EasyChair (2012)

    Google Scholar 

  9. Garret, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  10. Gouvea, F.Q.: p-adic Numbers: An Introduction (Universitext), Springer, 2nd edn. Springer (1983)

    Google Scholar 

  11. Hirvensalo, M.: Quantum Computing. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  12. Khrennikov, A.Y.: Non Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer Academic Publishers (1997)

    Google Scholar 

  13. Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn. Graduate Texts in Mathematics, vol. 58. Springer (1984)

    Google Scholar 

  14. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)

    MathSciNet  Google Scholar 

  15. Kozyrev, S.V.: Ultrametric Analysis and Interbasin Kinetics. p-Adic Mathematical Physics. In: Proc. of the 2nd International Conference on p-Adic Mathematical Physics, American Institute Conference Proceedings, vol. 826, pp. 121–128 (2006)

    Google Scholar 

  16. Madore, D.A.: A first introduction to p-adic numbers, http://www.madore.org/~david/math/padics.pdf

  17. Turakainen, P.: Generalized Automata and Stochastic Languages. Proceedings of the American Mathematical Society 21(2), 303–309 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1995)

    Google Scholar 

  19. Weyl, H.: The concept of a Riemann surface. Dover Publications, New York (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freivalds, R. (2013). Ultrametric Finite Automata and Turing Machines. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38771-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38770-8

  • Online ISBN: 978-3-642-38771-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics