Abstract
We introduce a notion of ultrametric automata and Turing machines using p-adic numbers to describe random branching of the process of computation. These automata have properties similar to the properties of probabilistic automata but complexity of probabilistic automata and complexity of ultrametric automata can differ very much.
The research was supported by Project 271/2012 from the Latvian Council of Science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ablayev, F.M., Freivalds, R.: Why Sometimes Probabilistic Algorithms Can Be More Effective. In: Wiedermann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 1–14. Springer, Heidelberg (1986)
Artin, E.: Beweis des allgemeinen Reziprozitätsgesetzes. Mat. Sem. Univ. Hamburg, B.5, 353–363 (1927)
Dragovich, B., Dragovich, A.: A p-Adic Model of DNA Sequence and Genetic Code. p-Adic Numbers, Ultrametric Analysis, and Applications 1(1), 34–41 (2009)
Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Computability Theory, pp. 473–503. North-Holland, Amsterdam (1999)
Freivalds, R.: Complexity of Probabilistic Versus Deterministic Automata. In: Barzdins, J., Bjorner, D. (eds.) Baltic Computer Science. LNCS, vol. 502, pp. 565–613. Springer, Heidelberg (1991)
Freivalds, R.: How to Simulate Free Will in a Computational Device. ACM Computing Surveys 31(3), 15 (1999)
Freivalds, R.: Non-Constructive Methods for Finite Probabilistic Automata. International Journal of Foundations of Computer Science 19(3), 565–580 (2008)
Freivalds, R.: Ultrametric automata and Turing machines. In: Voronkov, A. (ed.) Turing-100. EPiC Series, vol. 10, pp. 98–112. EasyChair (2012)
Garret, P.: The Mathematics of Coding Theory. Pearson Prentice Hall, Upper Saddle River (2004)
Gouvea, F.Q.: p-adic Numbers: An Introduction (Universitext), Springer, 2nd edn. Springer (1983)
Hirvensalo, M.: Quantum Computing. Springer, Heidelberg (2001)
Khrennikov, A.Y.: Non Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Kluwer Academic Publishers (1997)
Koblitz, N.: p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edn. Graduate Texts in Mathematics, vol. 58. Springer (1984)
Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Problems in Information Transmission 1, 1–7 (1965)
Kozyrev, S.V.: Ultrametric Analysis and Interbasin Kinetics. p-Adic Mathematical Physics. In: Proc. of the 2nd International Conference on p-Adic Mathematical Physics, American Institute Conference Proceedings, vol. 826, pp. 121–128 (2006)
Madore, D.A.: A first introduction to p-adic numbers, http://www.madore.org/~david/math/padics.pdf
Turakainen, P.: Generalized Automata and Stochastic Languages. Proceedings of the American Mathematical Society 21(2), 303–309 (1969)
Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1995)
Weyl, H.: The concept of a Riemann surface. Dover Publications, New York (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Freivalds, R. (2013). Ultrametric Finite Automata and Turing Machines. In: Béal, MP., Carton, O. (eds) Developments in Language Theory. DLT 2013. Lecture Notes in Computer Science, vol 7907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38771-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-38771-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38770-8
Online ISBN: 978-3-642-38771-5
eBook Packages: Computer ScienceComputer Science (R0)