Abstract
In an L(2,1)-coloring of a graph, the vertices are colored with colors from an ordered set such that neighboring vertices get colors that have distance at least 2 and vertices at distance 2 in the graph get different colors. We consider the problem of finding an L(2,1)-coloring using a minimum range of colors in an online setting where the vertices arrive in consecutive time steps together with information about their neighbors and vertices at distance two among the previously revealed vertices. For this, we restrict our attention to paths and cycles.
Offline, paths can easily be colored within the range {0,…,4} of colors. We prove that, considering deterministic algorithms in an online setting, the range {0,…,6} is necessary and sufficient while a simple greedy strategy needs range {0,…,7}.
Advice complexity is a recently developed framework to measure the complexity of online problems. The idea is to measure how many bits of advice about the yet unknown parts of the input an online algorithm needs to compute a solution of a certain quality. We show a sharp threshold on the advice complexity of the online L(2,1)-coloring problem on paths and cycles. While achieving color range {0,…,6} does not need any advice, improving over this requires a number of advice bits that is linear in the size of the input. Thus, the L(2,1)-coloring problem is the first known example of an online problem for which sublinear advice does not help.
We further use our advice complexity results to prove that no randomized online algorithm can achieve a better expected competitive ratio than \(\frac{5}{4}(1-\delta)\), for any δ > 0.
This work was partially supported by SNF grant 200021-141089.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg (2012)
Bodlaender, H.L., Kloks, T., Tan, R.B., van Leeuwen, J.: Approximations for λ-colorings of graphs. Comput. J. 47(2), 193–204 (2004)
Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: On the advice complexity of the knapsack problem. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 61–72. Springer, Heidelberg (2012)
Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)
Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)
Böckenhauer, H.-J., Hromkovič, J., Komm, D., Královič, R., Rossmanith, P.: On the power of randomness versus advice in online computation. In: Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive. LNCS, vol. 7300, pp. 30–43. Springer, Heidelberg (2012)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)
Broersma, H.: A General Framework for Coloring Problems: Old Results, New Results, and Open Problems. In: Akiyama, J., Baskoro, E.T., Kano, M. (eds.) IJCCGGT 2003. LNCS, vol. 3330, pp. 65–79. Springer, Heidelberg (2005)
Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO ITA 43(3), 585–613 (2009)
Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg (2009)
Forišek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239. Springer, Heidelberg (2012)
Griggs, J.R., Yeh, R.K.: Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5(4), 586–595 (1992)
Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)
Komm, D., Královič, R.: Advice complexity and barely random algorithms. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 332–343. Springer, Heidelberg (2011)
Komm, D., Královič, R., Mömke, T.: On the advice complexity of the set cover problem. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 241–252. Springer, Heidelberg (2012)
Komm, D.: Advice and Randomization in Online Computation. PhD Thesis, ETH Zurich (2012)
Murphey, R.A., Pardalos, P.M., Resende, M.G.C.: Frequency assignment problems. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, Supplement 1, pp. 295–377. Kluwer Academic Publishers (1999)
Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server problem. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 198–210. Springer, Heidelberg (2012)
Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online vertex coloring problem. In: Proc. of CIAC 2013 (to appear, 2013)
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)
Yeh, R.K.: A survey on labeling graphs with a condition at distance two. Discrete Mathematics 306(12), 1217–1231 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bianchi, M.P., Böckenhauer, HJ., Hromkovič, J., Krug, S., Steffen, B. (2013). On the Advice Complexity of the Online L(2,1)-Coloring Problem on Paths and Cycles. In: Du, DZ., Zhang, G. (eds) Computing and Combinatorics. COCOON 2013. Lecture Notes in Computer Science, vol 7936. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38768-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-38768-5_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38767-8
Online ISBN: 978-3-642-38768-5
eBook Packages: Computer ScienceComputer Science (R0)