Abstract
The Dendritic Cell Algorithm (DCA) is an immune-inspired classification algorithm based on the behavior of natural dendritic cells (DC). This paper proposes a novel version of the DCA based on a two-level hybrid fuzzy-rough model. In the top-level, the proposed algorithm, named RST-MFDCM, applies rough set theory to build a solid data pre-processing phase. In the second level, RST-MFDCM applies fuzzy set theory to smooth the crisp separation between the DC’s semi-mature and mature contexts. The experimental results show that RST-MFDCM succeeds in obtaining significantly improved classification accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)
Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)
Chelly, Z., Elouedi, Z.: Further exploration of the fuzzy dendritic cell method. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 419–432. Springer, Heidelberg (2011)
Kaiser, H.: A note on guttman’s lower bound for the number of common factors. British Journal of Mathematical and Statistical Psychology 14, 1–2 (1961)
Chelly, Z., Elouedi, Z.: RST-DCA: A dendritic cell algorithm based on rough set theory. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 480–487. Springer, Heidelberg (2012)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)
Gu, F., Greensmith, J., Oates, R., Aickelin, U.: Pca 4 dca: The application of principal component analysis to the dendritic cell algorithm. In: Proceedings of the 9th Annual Workshop on Computational Intelligence (2009)
Zimmermann, J.: Fuzzy set theory and its applications. European Journal of Operational Research 1, 227–228 (1996)
Asuncion, A., Newman, D.J.: UCI machine learning repository, (2007), http://mlearn.ics.uci.edu/mlrepository.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chelly, Z., Elouedi, Z. (2013). A New Hybrid Fuzzy-Rough Dendritic Cell Immune Classifier. In: Tan, Y., Shi, Y., Mo, H. (eds) Advances in Swarm Intelligence. ICSI 2013. Lecture Notes in Computer Science, vol 7928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38703-6_60
Download citation
DOI: https://doi.org/10.1007/978-3-642-38703-6_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38702-9
Online ISBN: 978-3-642-38703-6
eBook Packages: Computer ScienceComputer Science (R0)