State-Space Reduction through Preference Modeling | SpringerLink
Skip to main content

State-Space Reduction through Preference Modeling

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7895))

Included in the following conference series:

  • 2289 Accesses

Abstract

Automated planning for numerous co-existing agents, with uncertainty caused by various levels of their predictability, observability and autonomy, is a complex task. One of the most significant issues is related to explosion of the state space. This paper presents a formal framework which can be used to model such systems and proposes the use of formally-modeled agents’ preferences as a way of reducing the number of states. A detailed description of preference modeling is provided, and the approach is evaluated by examples.

This work is supported by the Polish National Science Centre (NCN) grant 2011/01/D/ST6/06146.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turek, W., Marcjan, R., Cetnarowicz, K.: Software agent systems for improving performance of multi-robot groups. Fundamenta Informaticae 112(1), 103–117 (2011)

    Google Scholar 

  2. Cetnarowicz, K.: From algorithm to agent. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part II. LNCS, vol. 5545, pp. 825–834. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)

    Google Scholar 

  4. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Education (2010)

    Google Scholar 

  5. Bonet, B.: Planning as heuristic search. Artificial Intelligence 129(1-2), 5–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Keyder, E., Geffner, H.: Trees of shortest paths vs. Steiner trees: Understanding and improving delete relaxation heuristics. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1734–1749 (2009)

    Google Scholar 

  7. Karpas, E., Domshlak, C.: Optimal Search with Inadmissible Heuristics. In: International Conference on Automated Planning and Scheduling, pp. 92–100 (2012)

    Google Scholar 

  8. Haslum, P.: hm (P)= h1 (Pm): Alternative characterisations of the generalisation from hmax to hm. In: Proc. ICAPS, vol. 1, pp. 354–357 (2009)

    Google Scholar 

  9. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: Whats the difference anyway. In: Proc. ICAPS, vol. 9 (2009)

    Google Scholar 

  10. Öztürk, M., Tsoukiàs, A., Vincke, P.: Preference modelling. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 27–72. Springer, Boston (2005)

    Google Scholar 

  11. Fong, J., Indulska, J., Robinson, R.: A preference modelling approach to support intelligibility in pervasive applications. In: 8th IEEE Workshop on Context Modeling and Reasoning (CoMoRea 2011), Seattle, USA, March 21-25, pp. 409–414. IEEE (2011)

    Google Scholar 

  12. Wolter, F., Wooldridge, M.: Temporal and dynamic logic. Journal of Indian Council of Philosophical Research XXVII(1), 249–276 (2011)

    Google Scholar 

  13. Chellas, B.F.: Modal Logic. Cambridge University Press (1980)

    Google Scholar 

  14. d’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J.: Handbook of Tableau Methods. Kluwer Academic Publishers (1999)

    Google Scholar 

  15. Klimek, R.: Temporal preference models and their deduction-based analysis for pervasive applications. In: Benavente-Peces, C., Filipe, J. (eds.) Proceedings of 3rd International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2013), Barcelona, Spain, February 19-21, pp. 131–134. SciTePress (2013)

    Google Scholar 

  16. Klimek, R.: Proposal to improve the requirements process through formal verification using deductive approach. In: Filipe, J., Maciaszek, L. (eds.) Proceedings of 7th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2012), Wrocław, Poland, June 29-30, pp. 105–114. SciTePress (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klimek, R., Wojnicki, I., Ernst, S. (2013). State-Space Reduction through Preference Modeling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2013. Lecture Notes in Computer Science(), vol 7895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38610-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38610-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38609-1

  • Online ISBN: 978-3-642-38610-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics