Homomorphic Encryption with Access Policies: Characterization and New Constructions | SpringerLink
Skip to main content

Homomorphic Encryption with Access Policies: Characterization and New Constructions

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2013 (AFRICACRYPT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7918))

Included in the following conference series:

Abstract

A characterization of predicate encryption (PE) with support for homomorphic operations is presented and we describe the homomorphic properties of some existing PE constructions. Even for the special case of IBE, there are few known group-homomorphic cryptosystems. Our main construction is an XOR-homomorphic IBE scheme based on the quadratic residuosity problem (variant of the Cocks’ scheme), which we show to be strongly homomorphic. We were unable to construct an anonymous variant that preserves this homomorphic property, but we achieved anonymity for a weaker notion of homomorphic encryption, which we call non-universal. A related security notion for this weaker primitive is formalized. Finally, some potential applications and open problems are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM Symposium on Symposium on Theory of Computing, STOC 2009, p. 169 (2009)

    Google Scholar 

  2. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from (Standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011), http://eprint.iacr.org/

  6. Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, STOC 1982, pp. 365–377. ACM, New York (1982)

    Chapter  Google Scholar 

  7. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms 31, 469–472 (1985)

    Google Scholar 

  9. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 1219–1234. ACM, New York (2012)

    Chapter  Google Scholar 

  13. Naccache, D.: Is theoretical cryptography any good in practice? Talk given at CHES 2010 and Crypto 2010 (2010)

    Google Scholar 

  14. Brakerski, Z., Vaikuntanathan, V.: Efficient Fully Homomorphic Encryption from (Standard) LWE. Cryptology ePrint Archive, Report 2011/344 Version: 20110627:080002 (2011), http://eprint.iacr.org/

  15. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008)

    Google Scholar 

  16. Gentry, C., Halevi, S., Vaikuntanathan, V.: A Simple BGN-Type Cryptosystem from LWE. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Benaloh, J.: Dense probabilistic encryption. In: Proceedings of the Workshop on Selected Areas of Cryptography, pp. 120–128 (1994)

    Google Scholar 

  19. Galbraith, S.D.: Elliptic Curve Paillier Schemes. J. Cryptology 15, 129–138 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Gjøsteen, K.: Homomorphic cryptosystems based on subgroup membership problems. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 314–327. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: characterizations, impossibility results, and applications. Designs, Codes and Cryptography, 1–24 (2012)

    Google Scholar 

  23. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  24. Hayashi, R., Tanaka, K.: Universally Anonymizable Public-Key Encryption. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 293–312. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  25. Ateniese, G., Gasti, P.: Universally anonymous IBE based on the quadratic residuosity assumption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 32–47. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Prabhakaran, M., Rosulek, M.: Homomorphic encryption with CCA security. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 667–678. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  28. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS, pp. 647–657. IEEE Computer Society (2007)

    Google Scholar 

  29. Goldwasser, S.: Lecture: Introduction to homomorophic encryption (2011), http://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-shafi-1.pdf (last Checked on March 31, 2013)

  30. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption: New perspectives and lower bounds. Cryptology ePrint Archive, Report 2012/468 (2012), http://eprint.iacr.org/

  31. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility results, impossibility results and the quest for a general definition. Cryptology ePrint Archive, Report 2012/515 (2012), http://eprint.iacr.org/

  32. Wei, R., Ye, D.: Delegate predicate encryption and its application to anonymous authentication. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS 2009, pp. 372–375. ACM, New York (2009)

    Google Scholar 

  33. Rothblum, R.: Homomorphic Encryption: From Private-Key to Public-Key. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 219–234. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  34. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  35. Alzaid, H., Foo, E., Nieto, J.G.: Secure data aggregation in wireless sensor network: a survey. In: Proceedings of the Sixth Australasian Conference on Information Security, AISC 2008, vol. 81, pp. 93–105. Australian Computer Society, Inc., Darlinghurst (2008)

    Google Scholar 

  36. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  37. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  38. Armknecht, F., Katzenbeisser, S., Peter, A.: Group homomorphic encryption: Characterizations, impossibility results, and applications. Cryptology ePrint Archive, Report 2010/501 (2010), http://eprint.iacr.org/

  39. Peng, K., Boyd, C., Dawson, E.: A Multiplicative Homomorphic Sealed-Bid Auction Based on Goldwasser-Micali Encryption. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 374–388. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  40. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.: An application of the goldwasser-micali cryptosystem to biometric authentication. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 96–106. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clear, M., Hughes, A., Tewari, H. (2013). Homomorphic Encryption with Access Policies: Characterization and New Constructions. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds) Progress in Cryptology – AFRICACRYPT 2013. AFRICACRYPT 2013. Lecture Notes in Computer Science, vol 7918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38553-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38553-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38552-0

  • Online ISBN: 978-3-642-38553-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics