Abstract
Total variation (TV) regularization, originally introduced by Rudin, Osher and Fatemi in the context of image denoising, has become widely used in the field of inverse problems. Two major directions of modifications of the original approach were proposed later on. The first concerns adaptive variants of TV regularization, the second focuses on higher-order TV models. In the present paper, we combine the ideas of both directions by proposing adaptive second-order TV models, including one anisotropic model. Experiments demonstrate that introducing adaptivity results in an improvement of the reconstruction error.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berkels, B., Burger, M., Droske, M., Nemitz, O., Rumpf, M.: Cartoon extraction based on anisotropic image classification. In: Vision, Modeling, and Visualization Proceedings, pp. 293–300 (2006)
Bredies, K., Kunisch, K., Pock, T.: Total Generalized Variation. SIAM J. Imaging Sciences 3(3), 492–526 (2010)
Chen, Q., Montesinos, P., Sun, Q.S., Heng, P.A., Xia, D.S.: Adaptive total variation denoising based on difference curvature. Image Vision Comput. 28(3), 298–306 (2010)
Dong, Y., Hintermüller, M.: Multi-scale total variation with automated regularization parameter selection for color image restoration. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 271–281. Springer, Heidelberg (2009)
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Conf. on Fast Processing of Photogrammetric Data, pp. 281–305 (1987)
Frick, K., Marnitz, P., Munk, A.: Statistical multiresolution estimation for variational imaging: With an application in Poisson-biophotonics. J. Math. Imaging Vis, 1–18 (2012)
Grasmair, M.: Locally adaptive total variation regularization. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 331–342. Springer, Heidelberg (2009)
Grasmair, M., Lenzen, F.: Anisotropic Total Variation Filtering. Appl. Math. Optim. 62(3), 323–339 (2010)
Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans. Image Processing 21, 2559–2571 (2012)
Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4(4), 1091–1115 (2005) (electronic)
Lefkimmiatis, S., Bourquard, A., Unser, M.: Hessian-based norm regularization for image restoration with biomedical applications. IEEE Transactions on Image Processing 21(3), 983–995 (2012)
Lenzen, F., Becker, F., Lellmann, J., Petra, S., Schnörr, C.: A class of quasi-variational inequalities for adaptive image denoising and decomposition. Comput. Optim. Appl. (2012) (online first )
Lysaker, M., Tai, X.-C.: Iterative image restoration combining total variation minimization and a second-order functional. Int. J. Comp. Vis. 66, 5–18 (2006)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)
Scherzer, O.: Denoising with higher order derivatives of bounded variation and an application to parameter estimation. Computing 60, 1–27 (1998)
Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Springer (2009)
Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete l1-type functionals. Comm. Math. Sci. 9, 797–872 (2011)
Steidl, G., Teuber, T.: Anisotropic smoothing using double orientations. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 477–489. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lenzen, F., Becker, F., Lellmann, J. (2013). Adaptive Second-Order Total Variation: An Approach Aware of Slope Discontinuities. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-38267-3_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38266-6
Online ISBN: 978-3-642-38267-3
eBook Packages: Computer ScienceComputer Science (R0)