Anisotropic Third-Order Regularization for Sparse Digital Elevation Models | SpringerLink
Skip to main content

Anisotropic Third-Order Regularization for Sparse Digital Elevation Models

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2013)

Abstract

We consider the problem of interpolating a surface based on sparse data such as individual points or level lines. We derive interpolators satisfying a list of desirable properties with an emphasis on preserving the geometry and characteristic features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE and higher-order total variation methods qualitatively and quantitatively on real-world digital elevation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Almansa, A.: échantillonnage, interpolation et détection. applications en imagerie satellitaire. Technical report, ENS Cachan (2002)

    Google Scholar 

  2. Almansa, A., Cao, F., Gousseau, Y., Rouge, B.: Interpolation of digital elevation models using AMLE and related methods. Geoscience and Remote Sensing 40, 314–325 (2002)

    Article  Google Scholar 

  3. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Rational Mech. 123, 199–257 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press (2000)

    Google Scholar 

  5. Carr, J.C., Fright, W.R., Beatson, R.K.: Surface interpolation with radial basis functions for medical imaging. Trans. Med. Imaging 16(1), 96–107 (1997)

    Article  Google Scholar 

  6. Caselles, V., Morel, J.-M., Sbert, C.: An axiomatic approach to image interpolation. Trans. Image Proc. 7(3), 376–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cressie, N.: Statistics for Spatial Data. Wiley, New York (1993)

    Google Scholar 

  8. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Anal. Numér. 10, 5–12 (1976)

    MathSciNet  Google Scholar 

  9. Franke, R.: Scattered data interpolation: Test of some methods. Math. Comput. 38, 181–200 (1982)

    MathSciNet  MATH  Google Scholar 

  10. Gesch, D., Evans, G., Mauck, J., Hutchinson, J., Carswell Jr., W.J.: The national map – elevation. U.S. Geological Survey Fact Sheet 3053 (2009)

    Google Scholar 

  11. Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic (1978)

    Google Scholar 

  12. Masnou, S., Morel, J.: Level lines based disocclusion. In: 5th IEEE Int’l Conf. on Image Processing, Chicago, IL, October 4-7, pp. 259–263 (1998)

    Google Scholar 

  13. Matheron, G.: La théorie des variables régionalisées, et ses applications. Technical Report 5, Les Cahiers du Centre de Morphol. Math. de Fontainebleau (1971)

    Google Scholar 

  14. Meinguet, J.: Surface Spline Interpolation: Basic Theory and Computational Aspects. In: Approximation Theory and Spline Functions, Dordrecht, Holland, pp. 124–142 (1984)

    Google Scholar 

  15. Meyer, T.: Coastal elevation from sparse level curves. Summer project under the guidance of T. Wittman, A. Bertozzi, and A. Chen, UCLA (2011)

    Google Scholar 

  16. Meyers, D., Skinner, S., Sloan, K.: Surfaces from contours. Trans. on Graphics 11(3), 228–258 (1992)

    Article  MATH  Google Scholar 

  17. Mitas, L., Mitasova, H.: Spatial Interpolation. Wiley (1999)

    Google Scholar 

  18. Savin, O.: C 1 regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176(3), 351–361 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Soille, P.: Spatial distributions from contour lines: An efficient method based on distance transformations. J. Vis. Commun. Image Represent. 2(2), 138–150 (1991)

    Article  Google Scholar 

  20. Soille, P.: Generalized Geodesic Distances Applied to Interpolation and Shape Description. In: Mathematical Morphology and its Applications to Image Processing. Kluwer (1994)

    Google Scholar 

  21. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lellmann, J., Morel, JM., Schönlieb, CB. (2013). Anisotropic Third-Order Regularization for Sparse Digital Elevation Models. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics