Abstract
In 1987 Samson Abramsky presented Domain Theory in Logical Form in the Logic in Computer Science conference. His contribution to the conference proceedings was honoured with the Test-of-Time award 20 years later. In this note I trace a particular line of research that arose from this landmark paper, one that was triggered by my collaboration with Samson on the article Domain Theory which was published as a chapter in the Handbook of Logic in Computer Science in 1994.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in Functional Programming, pp. 65–117. Addison Wesley (1990)
Abramsky, S.: A domain equation for bisimulation. Information and Computation 92, 161–218 (1991)
Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic 51, 1–77 (1991)
Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Semantic Structures. Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Clarendon Press (1994)
Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimulation for labeled Markov processes. In: 13th IEEE Symposium on Logic in Computer Science, Indianapolis 1998, pp. 478–489 (1998)
Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. Information and Computation 179, 163–193 (2002)
Escardó, M.H.: Synthetic topology of data types and classical spaces. In: Desharnais, J., Panangaden, P. (eds.) Domain-theoretic Methods in Probabilistic Processes. Electronic Notes in Theoretical Computer Science, vol. 87, pp. 21–156. Elsevier Science Publishers B.V. (2004)
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer (1980)
Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press (2003)
Hennessy, M.C.B., Plotkin, G.D.: Full abstraction for a simple parallel programming language. In: Bečvář, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 108–120. Springer, Heidelberg (1979)
Jung, A., Kegelmann, M., Moshier, M.A.: Stably compact spaces and closed relations. In: Brookes, S., Mislove, M. (eds.) 17th Conference on Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science, vol. 45, 24 pages. Elsevier Science Publishers B.V. (2001)
Jung, A., Moshier, M.A.: On the bitopological nature of Stone duality. Technical Report CSR-06-13, School of Computer Science, The University of Birmingham, 110 pages (2006)
Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Proceedings of the 4th Annual Symposium on Logic in Computer Science, pp. 186–195. IEEE Computer Society Press (1989)
Jung, A., Sünderhauf, P.: On the duality of compact vs. open. In: Andima, S., Flagg, R.C., Itzkowitz, G., Misra, P., Kong, Y., Kopperman, R. (eds.) Papers on General Topology and Applications: Eleventh Summer Conference at the University of Southern Maine. Annals of the New York Academy of Sciences, vol. 806, pp. 214–230 (1996)
Jung, A., Tix, R.: The troublesome probabilistic powerdomain. In: Edalat, A., Jung, A., Keimel, K., Kwiatkowska, M. (eds.) Proceedings of the Third Workshop on Computation and Approximation. Electronic Notes in Theoretical Computer Science, vol. 13, 23 pages. Elsevier Science Publishers B.V. (1998)
Jung, A.: The classification of continuous domains. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pp. 35–40. IEEE Computer Society Press (1990)
Jung, A.: Stably compact spaces and the probabilistic powerspace construction. In: Desharnais, J., Panangaden, P. (eds.) Domain-Theoretic Methods in Probabilistic Processes. Electronic Notes in Theoretical Computer Science, vol. 87, pp. 5–20. Elsevier Science Publishers B.V. (2004)
Kegelmann, M.: Continuous domains in logical form. PhD thesis, School of Computer Science, The University of Birmingham (1999)
Klinke, O.: A bitopological point-free approach to compactifications. PhD thesis, School of Computer Science, The University of Birmingham (2012)
Lawson, J.D.: The duality of continuous posets. Houston Journal of Mathematics 5, 357–394 (1979)
Moshier, M.A., Jung, A.: A logic for probabilities in semantics. In: Bradfield, J.C. (ed.) CSL 2002. LNCS, vol. 2471, pp. 216–231. Springer, Heidelberg (2002)
Plotkin, G.D.: Post-graduate lecture notes in advanced domain theory (incorporating the “Pisa Notes”). Dept. of Computer Science, Univ. of Edinburgh (1981)
Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society 2, 186–190 (1970)
Scott, D.S.: A type theoretic alternative to ISWIM, CUCH, OWHY. University of Oxford (1969) (manuscript)
Scott, D.S.: Continuous lattices. In: Lawvere, E. (ed.) Toposes, Algebraic Geometry and Logic. Lecture Notes in Mathematics, vol. 274, pp. 97–136. Springer (1972)
Scott, D.S.: A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science 121, 411–440 (1993); Reprint of a manuscript written in 1969
Saheb-Djahromi, N.: CPO’s of measures for nondeterminism. Theoretical Computer Science 12, 19–37 (1980)
Smyth, M.B.: Effectively given domains. Theoretical Computer Science 5, 257–274 (1977)
Smyth, M.B.: The largest cartesian closed category of domains. Theoretical Computer Science 27, 109–119 (1983)
Smyth, M.B.: Power domains and predicate transformers: a topological view. In: Díaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 662–675. Springer, Heidelberg (1983)
Smyth, M.B.: Stable compactification I. Journal of the London Mathematical Society 45, 321–340 (1992)
Stone, M.H.: The theory of representations for Boolean algebras. Trans. American Math. Soc. 40, 37–111 (1936)
Stone, M.H.: Topological representation of distributive lattices. Časopsis pro Pěstování Matematiky a Fysiky 67, 1–25 (1937)
Vickers, S.J.: Topology Via Logic. Cambridge Tracts in Theoretical Computer Science, vol. 5. Cambridge University Press (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Jung, A. (2013). Continuous Domain Theory in Logical Form. In: Coecke, B., Ong, L., Panangaden, P. (eds) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Lecture Notes in Computer Science, vol 7860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38164-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-38164-5_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38163-8
Online ISBN: 978-3-642-38164-5
eBook Packages: Computer ScienceComputer Science (R0)