Split-Merge Augmented Gibbs Sampling for Hierarchical Dirichlet Processes | SpringerLink
Skip to main content

Split-Merge Augmented Gibbs Sampling for Hierarchical Dirichlet Processes

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

  • 10k Accesses

Abstract

The Hierarchical Dirichlet Process (HDP) model is an important tool for topic analysis. Inference can be performed through a Gibbs sampler using the auxiliary variable method. We propose a split-merge procedure to augment this method of inference, facilitating faster convergence. Whilst the incremental Gibbs sampler changes topic assignments of each word conditioned on the previous observations and model hyper-parameters, the split-merge sampler changes the topic assignments over a group of words in a single move. This allows efficient exploration of state space. We evaluate the proposed sampler on a synthetic test set and two benchmark document corpus and show that the proposed sampler enables the MCMC chain to converge faster to the desired stationary distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476), 1566–1581 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. Journal of MachineResearch 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Jain, S., Neal, R.: A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics 13(1), 158–182 (2004)

    Article  MathSciNet  Google Scholar 

  4. Wang, C., Blei, D.: A split-merge mcmc algorithm for the hierarchical dirichlet process. Arxiv preprint arXiv:1201.1657 (2012)

    Google Scholar 

  5. Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 2(6), 1152–1174 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sethuraman, J.: A constructive definition of Dirichlet priors. Statistica Sinica 4(2), 639–650 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Teh, Y., Jordan, M.: Hierarchical Bayesian nonparametric models with applications. In: Hjort, N., Holmes, C., Müller, P., Walker, S. (eds.) Bayesian Nonparametrics: Principles and Practice, p. 158. Cambridge University Press (2009)

    Google Scholar 

  8. Xing, E., Sohn, K., Jordan, M., Teh, Y.: Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1049–1056. ACM (2006)

    Google Scholar 

  9. Li, L., Fei-Fei, L.: Optimol: automatic online picture collection via incremental model learning. International Journal of Computer Vision 88(2), 147–168 (2010)

    Article  Google Scholar 

  10. Dahl, D.: Sequentially-allocated merge-split sampler for conjugate and nonconjugate dirichlet process mixture models. Journal of Computational and GraphicalStatistics (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rana, S., Phung, D., Venkatesh, S. (2013). Split-Merge Augmented Gibbs Sampling for Hierarchical Dirichlet Processes. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics