Abstract
The Hierarchical Dirichlet Process (HDP) model is an important tool for topic analysis. Inference can be performed through a Gibbs sampler using the auxiliary variable method. We propose a split-merge procedure to augment this method of inference, facilitating faster convergence. Whilst the incremental Gibbs sampler changes topic assignments of each word conditioned on the previous observations and model hyper-parameters, the split-merge sampler changes the topic assignments over a group of words in a single move. This allows efficient exploration of state space. We evaluate the proposed sampler on a synthetic test set and two benchmark document corpus and show that the proposed sampler enables the MCMC chain to converge faster to the desired stationary distribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Teh, Y., Jordan, M., Beal, M., Blei, D.: Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476), 1566–1581 (2006)
Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. Journal of MachineResearch 3, 993–1022 (2003)
Jain, S., Neal, R.: A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. Journal of Computational and Graphical Statistics 13(1), 158–182 (2004)
Wang, C., Blei, D.: A split-merge mcmc algorithm for the hierarchical dirichlet process. Arxiv preprint arXiv:1201.1657 (2012)
Antoniak, C.: Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 2(6), 1152–1174 (1974)
Sethuraman, J.: A constructive definition of Dirichlet priors. Statistica Sinica 4(2), 639–650 (1994)
Teh, Y., Jordan, M.: Hierarchical Bayesian nonparametric models with applications. In: Hjort, N., Holmes, C., Müller, P., Walker, S. (eds.) Bayesian Nonparametrics: Principles and Practice, p. 158. Cambridge University Press (2009)
Xing, E., Sohn, K., Jordan, M., Teh, Y.: Bayesian multi-population haplotype inference via a hierarchical dirichlet process mixture. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1049–1056. ACM (2006)
Li, L., Fei-Fei, L.: Optimol: automatic online picture collection via incremental model learning. International Journal of Computer Vision 88(2), 147–168 (2010)
Dahl, D.: Sequentially-allocated merge-split sampler for conjugate and nonconjugate dirichlet process mixture models. Journal of Computational and GraphicalStatistics (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rana, S., Phung, D., Venkatesh, S. (2013). Split-Merge Augmented Gibbs Sampling for Hierarchical Dirichlet Processes. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_46
Download citation
DOI: https://doi.org/10.1007/978-3-642-37456-2_46
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37455-5
Online ISBN: 978-3-642-37456-2
eBook Packages: Computer ScienceComputer Science (R0)