Tracing Influential Nodes in a Social Network with Competing Information | SpringerLink
Skip to main content

Tracing Influential Nodes in a Social Network with Competing Information

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

  • 10k Accesses

Abstract

We consider the problem of competitive influence maximization where multiple pieces of information are spreading simultaneously in a social network. In this problem, we need to identify a small number of influential nodes as first adopters of our information so that the information can be spread to as many nodes as possible with competition against adversary information. We first propose a generalized model of competitive information diffusion by explicitly characterizing the preferences of nodes. Under this generalized model, we show that the influence spreading process is no longer submodular, which implies that the widely used greedy algorithm does not have performance guarantee. So we propose a simple yet effective heuristic algorithm by tracing the information back according to a properly designed random walk on the network, based on the postulation that all initially inactive nodes can be influenced by our information. Extensive experiments are conducted to evaluate the performance of our algorithm. The results show that our algorithm outperforms many other algorithms in most cases, and is very scalable due to its low running time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  2. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J.M., Glance, N.S.: Cost-effective outbreak detection in networks. In: KDD, pp. 420–429 (2007)

    Google Scholar 

  3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: KDD, pp. 199–208 (2009)

    Google Scholar 

  4. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD, pp.1029–1038 (2010)

    Google Scholar 

  5. Zhang, Y., Gu, Q., Zheng, J., Chen, D.: Estimate on Expectation for Influence Maximization in Social Networks. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 99–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale networks. In: KDD, pp. 807–816 (2009)

    Google Scholar 

  7. Jo, Y., Hopcroft, J.E., Lagoze, C.: The web of topics: discovering the topology of topic evolution in a corpus. In: WWW, pp. 257–266 (2011)

    Google Scholar 

  8. Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: KDD, pp. 1019–1028 (2010)

    Google Scholar 

  9. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: WWW, pp. 665–674 (2011)

    Google Scholar 

  10. Bharathi, S., Kempe, D., Salek, M.: Competitive Influence Maximization in Social Networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Kostka, J., Oswald, Y.A., Wattenhofer, R.: Word of Mouth: Rumor Dissemination in Social Networks. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS, vol. 5058, pp. 185–196. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Pathak, N., Banerjee, A., Srivastava, J.: A Generalized Linear Threshold Model for Multiple Cascades. In: ICDM, pp. 965–970 (2010)

    Google Scholar 

  13. He, X., Song, G., Chen, W., Jiang, Q.: Influence Blocking Maximization in Social Networks under the Competitive Linear Threshold Model. In: SDM, pp. 463-474 (2012)

    Google Scholar 

  14. Borodin, A., Filmus, Y., Oren, J.: Threshold Models for Competitive Influence in Social Networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical Report. Stanford InfoLab (1999)

    Google Scholar 

  16. Kimura, M., Saito, K.: Tractable Models for Information Diffusion in Social Networks. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 259–271. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Collaboration networks, http://snap.stanford.edu/data/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, B., Qian, Z., Wang, X., Lu, S. (2013). Tracing Influential Nodes in a Social Network with Competing Information. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics