Low-Rank Matrix Recovery with Discriminant Regularization | SpringerLink
Skip to main content

Low-Rank Matrix Recovery with Discriminant Regularization

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

Recently, image classification has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. Based on the success of low-rank matrix recovery which has been applied to statistical learning, computer vision and signal processing, this paper presents a novel low-rank matrix recovery algorithm with discriminant regularization. Standard low-rank matrix recovery algorithm decomposes the original dataset into a set of representative basis with a corresponding sparse error for modeling the raw data. Motivated by the Fisher criterion, the proposed method executes low-rank matrix recovery in a supervised manner, i.e., taking the with-class scatter and between-class scatter into account when the whole label information is available. The paper shows that the formulated model can be solved by the augmented Lagrange multipliers, and provide additional discriminating ability to the standard low-rank models for improved performance. The representative bases learned by the proposed method are encouraged to be structural coherence within the same class, and as independent as possible between classes. Numerical simulations on face recognition tasks demonstrate that the proposed algorithm is competitive with the state-of-the-art alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Olshausen, B.A., Field, D.J.: Sparse coding with an over-complete basis ser: a strategy employed by v1? Vision Research 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  2. Vinje, W.E., Gallant, J.L.: Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287(5456), 1273–1276 (2000)

    Article  Google Scholar 

  3. Wright, J., Ma, Y., Mairal, J., Spairo, G., Huang, T., Yan, S.C.: Sparse representation for computer vision and pattern recognition. Proceedings of the IEEE 98(6), 1031–1044 (2010)

    Article  Google Scholar 

  4. Wright, J., Yang, A.Y., Sastry, A.G.S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE PAMI 31(2), 210–227 (2009)

    Article  Google Scholar 

  5. Yang, M., Zhang, L., Yang, J., Zhang, D.: Robust sparse coding for face recognition. In: CVPR (2011)

    Google Scholar 

  6. Huang, K., Aviyente, S.: Sparse representation for signal classification. In: NIPS (2006)

    Google Scholar 

  7. Wagner, A., Wright, J., Ganesh, A., Zhou, Z.H., Ma, Y.: Towards a practical face recognition system: Robust registration and illumination by sparse representation. In: CVPR (2009)

    Google Scholar 

  8. Wagner, A., Wright, J., Ganesh, A., Zhou, Z.H., Ma, Y.: Towards a practical face recognition system: Robust registration and illumination by sparse representation. IEEE PAMI 34(2), 372–386 (2012)

    Article  Google Scholar 

  9. Candes, E., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? Journal of ACM 58(1), 1–37 (2009)

    MathSciNet  Google Scholar 

  10. Candes, E., Recht, B.: Exact low rank matrix completion via convex optimization. In: Allerton (2008)

    Google Scholar 

  11. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2215 (2009)

    Google Scholar 

  12. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE PAMI 19(7), 711–720 (1997)

    Article  Google Scholar 

  13. Li, Z., Lin, D., Tang, X.: Nonparametric discriminant analysis for face recognition. IEEE PAMI 31(4), 755–761 (2009)

    Article  Google Scholar 

  14. Lu, J., Tan, Y., Wang, G.: Discriminaive multi-manifold analysis for face recognition from a single trainning sample per person. IEEE PAMI pp(99),  1 (2012)

    Google Scholar 

  15. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscinces 3, 72–86 (1991)

    Google Scholar 

  16. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: For recognition using laplacianfaces. IEEE PAMI 27(3), 328–340 (2005)

    Article  Google Scholar 

  17. He, X., Cai, D., Niyogi, P.: Locality preserving projections. In: NIPS (2003)

    Google Scholar 

  18. Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE TIP 15(11), 3608–3614 (2006)

    Google Scholar 

  19. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extension: A general framework for dimensionality reduction. IEEE PAMI 29(1), 40–51 (2007)

    Article  Google Scholar 

  20. Hua, G., Viola, P., Drucker, S.: Face recognition using discriminatively trained orthogonal rank one tensor projections. In: CVPR (2007)

    Google Scholar 

  21. Xue, H., Chen, S., Yang, Q.: Discriminatively regularized least-squares classification. Pattern Recognition 42(1), 93–104 (2009)

    Article  MATH  Google Scholar 

  22. Si, S., Tao, D., Geng, B.: Bregman divergence-dased regularization for transfer subspace learning. IEEE TKDE 22(7), 929–942 (2010)

    Google Scholar 

  23. Lu, J., Tan, Y.: Cost-sensitive subspace learning for face recognition. In: CVPR (2010)

    Google Scholar 

  24. Lu, J., Tan, Y.: Regularized locality preserving projections and its extensions for face recognition. IEEE SMCB 40(3), 958–963 (2010)

    Google Scholar 

  25. Yuan, X., Yan, S.: classification with multi-task joint sparse representation. In: CVPR (2010)

    Google Scholar 

  26. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for hierarchical sparse coding. Journal of Machine Learning Research 12, 2297–2334 (2011)

    MathSciNet  Google Scholar 

  27. Cabral, R., Costeira, J., Torre, F., Bernardino, A.: Fast incremental method for matrix completion: an application to trajectory correction. In: ICIP (2011)

    Google Scholar 

  28. Wright, J., Ganesh, A., Rao, S., Ma, Y.: Robust principal component analysis: exact recovery of corrupted low rank matrices by convex optimization. In: NIPS (2009)

    Google Scholar 

  29. Peng, Y., Ganesh, A., Wright, J., Xu, W., Ma, Y.: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In: CVPR (2010)

    Google Scholar 

  30. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: ICML (2010)

    Google Scholar 

  31. Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: CVPR (2010)

    Google Scholar 

  32. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality constrained linear coding for image classification. In: CVPR (2010)

    Google Scholar 

  33. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE PAMI 23(6), 643–660 (2001)

    Article  Google Scholar 

  34. Martinez, A., Benavente, R.: The ar face database. CVC Technical Report 24 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, Z. et al. (2013). Low-Rank Matrix Recovery with Discriminant Regularization. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics