Cross Language Prediction of Vandalism on Wikipedia Using Article Views and Revisions | SpringerLink
Skip to main content

Cross Language Prediction of Vandalism on Wikipedia Using Article Views and Revisions

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7819))

Included in the following conference series:

Abstract

Vandalism is a major issue on Wikipedia, accounting for about 2% (350,000+) of edits in the first 5 months of 2012. The majority of vandalism are caused by humans, who can leave traces of their malicious behaviour through access and edit logs. We propose detecting vandalism using a range of classifiers in a monolingual setting, and evaluated their performance when using them across languages on two data sets: the relatively unexplored hourly count of views of each Wikipedia article, and the commonly used edit history of articles. Within the same language (English and German), these classifiers achieve up to 87% precision, 87% recall, and F1-score of 87%. Applying these classifiers across languages achieve similarly high results of up to 83% precision, recall, and F1-score. These results show characteristic vandal traits can be learned from view and edit patterns, and models built in one language can be applied to other languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Priedhorsky, R., Chen, J., Lam, S.T.K., Panciera, K., Terveen, L., Riedl, J.: Creating, destroying, and restoring value in wikipedia. In: Proceedings of the 2007 International ACM Conference on Supporting Group Work, GROUP 2007, pp. 259–268. ACM, New York (2007)

    Chapter  Google Scholar 

  2. Viégas, F.B., Wattenberg, M., Dave, K.: Studying cooperation and conflict between authors with history flow visualizations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2004, pp. 575–582. ACM, New York (2004)

    Chapter  Google Scholar 

  3. Kittur, A., Suh, B., Pendleton, B.A., Chi, E.H.: He says, she says: conflict and coordination in wikipedia. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2007, pp. 453–462. ACM, New York (2007)

    Chapter  Google Scholar 

  4. Smets, K., Goethals, B., Verdonk, B.: Automatic vandalism detection in wikipedia: Towards a machine learning approach. In: AAAI Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy, pp. 43–48 (2008)

    Google Scholar 

  5. Panciera, K., Halfaker, A., Terveen, L.: Wikipedians are born, not made: a study of power editors on wikipedia. In: Proceedings of the ACM 2009 International Conference on Supporting Group Work, GROUP 2009, pp. 51–60. ACM, New York (2009)

    Chapter  Google Scholar 

  6. Potthast, M., Stein, B., Gerling, R.: Automatic vandalism detection in wikipedia. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 663–668. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Rzeszotarski, J., Kittur, A.: Learning from history: predicting reverted work at the word level in wikipedia. In: Proc. of the ACM 2012 Conf. on Computer Supported Cooperative Work, CSCW 2012, pp. 437–440. ACM, New York (2012)

    Chapter  Google Scholar 

  8. Chin, S.C., Street, W.N., Srinivasan, P., Eichmann, D.: Detecting wikipedia vandalism with active learning and statistical language models. In: Proc. of the 4th Workshop on Information Credibility, WICOW 2010, pp. 3–10. ACM (2010)

    Google Scholar 

  9. Wang, W.Y., McKeown, K.: ”got you!”: Automatic vandalism detection in wikipedia with web-based shallow syntactic-semantic modeling. In: Proceedings of the 23rd International Conference on Computational Linguistics (Coling 2010), Beijing, China. Coling 2010 Organizing Committee, pp. 1146–1154 (August 2010)

    Google Scholar 

  10. Harpalani, M., Hart, M., Singh, S., Johnson, R., Choi, Y.: Language of vandalism: Improving wikipedia vandalism detection via stylometric analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, vol. 2, pp. 83–88 (2011)

    Google Scholar 

  11. Adler, B., de Alfaro, L., Pye, I.: Detecting wikipedia vandalism using wikitrust. Notebook Papers of CLEF 1, 22–23 (2010)

    Google Scholar 

  12. West, A.G., Kannan, S., Lee, I.: Detecting wikipedia vandalism via spatio-temporal analysis of revision metadata? In: Proceedings of the Third European Workshop on System Security, EUROSEC 2010, pp. 22–28. ACM, New York (2010)

    Chapter  Google Scholar 

  13. Potthast, M.: Crowdsourcing a wikipedia vandalism corpus. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 789–790. ACM, New York (2010)

    Google Scholar 

  14. Potthast, M., Holfeld, T.: Overview of the 2nd international competition on wikipedia vandalism detection. In: Notebook for PAN at CLEF (2011)

    Google Scholar 

  15. Velasco, S.: Wikipedia vandalism detection through machine learning: Feature review and new proposals. In: Lab Report for PAN-CLEF 2010 (2010)

    Google Scholar 

  16. West, A.G., Lee, I.: Multilingual vandalism detection using language-independent & ex post facto evidence - notebook for pan at clef 2011. In: Petras, V., Forner, P., Clough, P.D. (eds.) CLEF (Notebook Papers/Labs/Workshop) (2011)

    Google Scholar 

  17. Wu, Q., Irani, D., Pu, C., Ramaswamy, L.: Elusive vandalism detection in wikipedia: a text stability-based approach. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1797–1800. ACM, New York (2010)

    Google Scholar 

  18. Laurent, M., Vickers, T.: Seeking health information online: does wikipedia matter? Journal of the American Medical Informatics Association 16(4), 471–479 (2009)

    Article  Google Scholar 

  19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    Google Scholar 

  20. Rigutini, L., Maggini, M., Liu, B.: An em based training algorithm for cross-language text categorization. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 529–535 (September 2005)

    Google Scholar 

  21. Liu, Y., Dai, L., Zhou, W., Huang, H.: Active learning for cross language text categorization. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 195–206. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Potthast, M., Stein, B., Holfeld, T.: Overview of the 1st international competition on wikipedia vandalism detection. In: Braschler, M., Harman, D., Pianta, E. (eds.) CLEF (Notebook Papers/LABs/Workshops) (2010)

    Google Scholar 

  23. White, J., Maessen, R.: Zot! to wikipedia vandalism - lab report for pan at clef 2010. In: CLEF (Notebook Papers/LABs/Workshops) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tran, KN., Christen, P. (2013). Cross Language Prediction of Vandalism on Wikipedia Using Article Views and Revisions. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2013. Lecture Notes in Computer Science(), vol 7819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37456-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37456-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37455-5

  • Online ISBN: 978-3-642-37456-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics