QR-DCA: A New Rough Data Pre-processing Approach for the Dendritic Cell Algorithm | SpringerLink
Skip to main content

QR-DCA: A New Rough Data Pre-processing Approach for the Dendritic Cell Algorithm

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Included in the following conference series:

Abstract

In this paper, we propose a new approach of data pre- processing based on rough set theory for the Dendritic Cell Algorithm (DCA). Our hybrid immune inspired model, denoted QR-DCA, is based on the functioning of dendritic cells within the framework of rough set theory and more precisely, on the QuickReduct algorithm. As the DCA data pre-processing phase is divided into two sub-steps, feature selection and signal categorization, our QR-DCA model selects the right features for the DCA classification task and categorizes each one of them to its specific signal category. This is achieved while preserving the same DCA main characteristic which is its lightweight in terms of running time. Results show that our new approach generates good classification results. We will also compare our QR-DCA to other rough DCA models to show that our new approach outperforms them in terms of classification accuracy while keeping the worthy characteristics expressed by the DCA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Gu, F., Greensmith, J., Oates, R., Aickelin, U.: Pca 4 dca: The application of principal component analysis to the dendritic cell algorithm. CoRR (2010)

    Google Scholar 

  3. Cantú-Paz, E.: Feature Subset Selection, Class Separability, and Genetic Algorithms. In: Deb, K., Tari, Z. (eds.) GECCO 2004, Part I. LNCS, vol. 3102, pp. 959–970. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chelly, Z., Elouedi, Z.: RC-DCA: A New Feature Selection and Signal Categorization Technique for the Dendritic Cell Algorithm Based on Rough Set Theory. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 152–165. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Greensmith, J., Aickelin, U.: The Deterministic Dendritic Cell Algorithm. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 291–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Lotze, M.T., Thomson, A.W.: Dendritic Cells: Biology and Clinical Applications, 2nd edn., vol. 794 (2001)

    Google Scholar 

  7. Jolliffe, I.T.: Principal component analysis. Springer, New York (2002)

    MATH  Google Scholar 

  8. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jensen, R., Shen, Q.: A rough set-aided system for sorting www bookmarks. In: Zhong, N., et al. (eds.) Web Intelligence: Research and Development, pp. 95–105 (2001)

    Google Scholar 

  10. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

    Google Scholar 

  11. Chelly, Z., Elouedi, Z.: RST-DCA: A Dendritic Cell Algorithm Based on Rough Set Theory. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012, Part III. LNCS, vol. 7665, pp. 480–487. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chelly, Z., Elouedi, Z. (2013). QR-DCA: A New Rough Data Pre-processing Approach for the Dendritic Cell Algorithm. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics