Snippet-Based Relevance Predictions for Federated Web Search | SpringerLink
Skip to main content

Snippet-Based Relevance Predictions for Federated Web Search

  • Conference paper
Advances in Information Retrieval (ECIR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7814))

Included in the following conference series:

Abstract

How well can the relevance of a page be predicted, purely based on snippets? This would be highly useful in a Federated Web Search setting where caching large amounts of result snippets is more feasible than caching entire pages. The experiments reported in this paper make use of result snippets and pages from a diverse set of actual Web search engines. A linear classifier is trained to predict the snippet-based user estimate of page relevance, but also, to predict the actual page relevance, again based on snippets alone. The presented results confirm the validity of the proposed approach and provide promising insights into future result merging strategies for a Federated Web Search setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 17159
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arguello, J., Callan, J., Diaz, F.: Classification-based resource selection. In: CIKM 2009. ACM Press, New York (2009)

    Google Scholar 

  2. Clarke, C.L.A., Craswell, N., Soboroff, I., Cormack, G.V.: Overview of the TREC 2010 Web Track. In: TREC, pp. 1–9 (2010)

    Google Scholar 

  3. Demeester, T., Nguyen, D., Trieschnigg, D., Develder, C., Hiemstra, D.: What Snippets Say about Pages in Federated Web Search. In: Hou, Y., Nie, J.-Y., Sun, L., Wang, B., Zhang, P. (eds.) AIRS 2012. LNCS, vol. 7675, pp. 250–261. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Nguyen, D., Demeester, T., Trieschnigg, D., Hiemstra, D.: Federated Search in the Wild: the Combined Power of over a Hundred Search Engines. In: CIKM 2012 (2012)

    Google Scholar 

  5. Nigam, K., Lafferty, J., Mccallum, A.: Using Maximum Entropy for Text Classification. In: IJCAI 1999 Workshop on Information Filtering (1999)

    Google Scholar 

  6. Shokouhi, M., Li, L.: Federated Search. Foundations and Trends in Information Retrieval 5(1), 1–102 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Demeester, T., Nguyen, D., Trieschnigg, D., Develder, C., Hiemstra, D. (2013). Snippet-Based Relevance Predictions for Federated Web Search. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36973-5_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36972-8

  • Online ISBN: 978-3-642-36973-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics