Automatic Heart Isolation in 3D CT Images | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7766))

Included in the following conference series:

Abstract

In this chapter, we present an automatic heart segmentation algorithm for the diagnosis of coronary artery diseases (CAD). The goal is to visualize the heart from a cardiac CT image with irrelevant tissues such as the lungs, rib cage, pulmonary veins, pulmonary arteries and left atrial appendage hidden so that doctors can clearly see the major coronary artery trees, aorta and bypass arteries if they exist. The algorithm combines a model-based detection framework with data-driven post-refinements to create a mask for a given cardiac CT image that contains only the relevant part of the heart. The marginal space learning [1] technique is used to localize mesh model or landmark points of different cardiovascular structures in the CT volume. Guided by such detected models, local data-driven voxel-based refinements are employed to produce precise boundaries of the heart mask. The algorithm is fully automatic and can process a 3D cardiac CT volume within a few seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Medical Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  2. Lloyd-Jones, D., Adams, R., Carnethon, M., et al.: Heart disease and stroke statistics. Circulation 119(3), 21–181 (2009)

    Article  Google Scholar 

  3. Blaha, M., Budoff, M., DeFilippis, A., Blankstein, R., Rivera, J., Agatston, A., O’Leary, D., Lima, J., Blumenthal, R., Nasir, K.: Associations between C-reactive protein, coronary artery calcium, and cardiovascular events: implications for the JUPITER population from MESA, a population-based cohort study. The Lancet 378(9792), 684–692 (2011)

    Article  Google Scholar 

  4. Funka-Lea, G., Boykov, Y., Florin, C., Jolly, M.P., Moreau-Gobard, R., Ramaraj, R., Rinck, D.: Automatic heart isolation for CT coronary visualization using graph-cuts. In: Proc. IEEE Int’l Sym. Biomedical Imaging, pp. 614–617 (2006)

    Google Scholar 

  5. Moreno, A., Takemura, C.M., Colliot, O., Camara, O., Bloch, I.: Using anatomical knowledge expressed as fuzzy constraints to segment the heart in CT images. Pattern Recognition 41(8), 2525–2540 (2008)

    Article  Google Scholar 

  6. van Rikxoort, E.M., Isgum, I., Staring, M., Klein, S., van Ginneken, B.: Adaptive local multi-atlas segmentation: Application to heart segmentation in chest CT scans. In: Proc. of SPIE Medical Imaging (2008)

    Google Scholar 

  7. Lelieveldt, B.P.F., van der Geest, R.J., Rezaee, M.R., Bosch, J.G., Reiber, J.H.C.: Anatomical model matching with fuzzy implicit surfaces for segmentation of thoracic volume scans. IEEE Trans. Medical Imaging 18(3), 218–230 (1999)

    Article  Google Scholar 

  8. Gregson, P.H.: Automatic segmentation of the heart in 3D MR images. In: Canadian Conf. Electrical and Computer Engineering, pp. 584–587 (1994)

    Google Scholar 

  9. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley, Chichester (1998)

    Google Scholar 

  10. Tu, Z.: Probabilistic boosting-tree: Learning discriminative methods for classification, recognition, and clustering. In: Proc. Int’l Conf. Computer Vision, pp. 1589–1596 (2005)

    Google Scholar 

  11. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  12. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  13. Taubin, G.: Curve and surface smoothing without shrinkage. In: Proc. Int’l Conf. Computer Vision, pp. 852–857 (1995)

    Google Scholar 

  14. Zheng, Y., Loziczonek, M., Georgescu, B., Zhou, S.K., Vega-Higuera, F., Comaniciu., D.: Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes. In: Proc. of SPIE Medical Imaging, pp. 1–12 (2011)

    Google Scholar 

  15. Zheng, Y., John, M., Liao, R., Boese, J., Kirschstein, U., Georgescu, B., Zhou, S.K., Kempfert, J., Walther, T., Brockmann, G., Comaniciu, D.: Automatic aorta segmentation and valve landmark detection in C-arm CT: Application to aortic valve implantation. In: Proc. Int’l Conf. Medical Image Computing and Computer Assisted Intervention, pp. 1–8 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhong, H., Zheng, Y., Funka-Lea, G., Vega-Higuera, F. (2013). Automatic Heart Isolation in 3D CT Images. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36620-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36619-2

  • Online ISBN: 978-3-642-36620-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics