Abstract
Protecting individual sensitive specific information has become an area of concern over the past one decade. Several techniques like k-anonymity and l-diversity employing generalization/suppression based on concept hierarchies (CHTS) were proposed in literature. The anonymization effectiveness depends on the CHT chosen from the various CHTS possible for a given attribute. This paper proposes a model for constructing dynamic CHT for numerical attributes which can be: 1) generated on the fly for both generalization/suppression; 2) dynamically adjusted based on a given k. The anonymized data using our method yielded 12% better utility when compared to existing methods. The results obtained after experimentation support our claims and are discussed in the paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
HIPAA: Health Insurance Portability and Accountability Act (2002), http://www.hhs.gov/ocr/hipaa
Sweeney, L.: k-anonymity: A Model for Protecting Privacy. International Journal on Uncertainty. Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)
Machanavajjhala, A., Gehrke, J., Kifer, D.: l-Diversity: Privacy beyond k-Anonymity. In: Proceedings of the IEEE ICDE, p. 24 (2006)
Wong, R.C., Li, J., Fu, A.W., Wang, K.: (α, k)-Anonymity: An Enhanced k-Anonymity Model for Privacy-Preserving Data Publishing. In: Proceedings of the SIGKDD (2006)
Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In: Proceedings of the IEEE ICDE, pp. 106–115 (2007)
Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization and Suppression. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 571–588 (2002)
Iyengar, V.: Transforming Data to Satisfy Privacy Constraints. In: Proceedings of the ACM SIGKDD, pp. 279–288 (2002)
LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian Multidimensional k-Anonymity. In: Proceedings of the IEEE ICDE, Atlanta, Georgia (2006)
Samarati, P.: Protecting Respondents Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)
Xiao, X., Tao, Y.: Personalized Privacy Preservation. In: SIGMOD (2006)
Campan, A., Cooper, N.: On-the-Fly Hierarchies for Numerical Attributes in Data Anonymization. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 13–25. Springer, Heidelberg (2010)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Reading (2005)
Byun, J.W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymity using Clustering Techniques. CERIAS Technical Report 2006-10 (2006)
UCI Repository of Machine Learning databases, http://archive.ics.uci.edu/ml/
Campan, A., Cooper, N., Truta, T.M.: On-the-Fly Generalization Hierarchies for Numerical Attributes Revisited. In: Jonker, W., Petković, M. (eds.) SDM 2011. LNCS, vol. 6933, pp. 18–32. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Adusumalli, S.K., Valli Kumari, V. (2013). An Efficient and Dynamic Concept Hierarchy Generation for Data Anonymization. In: Hota, C., Srimani, P.K. (eds) Distributed Computing and Internet Technology. ICDCIT 2013. Lecture Notes in Computer Science, vol 7753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36071-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-642-36071-8_39
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36070-1
Online ISBN: 978-3-642-36071-8
eBook Packages: Computer ScienceComputer Science (R0)