Abstract
We consider the following online allocation problem: Given a unit square S, and a sequence of numbers n i ∈ {0,1} with \(\sum_{j=0}^i n_j\leq 1\); at each step i, select a region C i of previously unassigned area n i in S. The objective is to make these regions compact in a distance-aware sense: minimize the maximum (normalized) average Manhattan distance between points from the same set C i . Related location problems have received a considerable amount of attention; in particular, the problem of determining the “optimal shape of a city”, i.e., allocating a single n i has been studied, both in a continuous and a discrete setting. We present an online strategy, based on an analysis of space-filling curves; for continuous shapes, we prove a factor of 1.8092, and 1.7848 for discrete point sets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bender, C.M., Bender, M.A., Demaine, E.D., Fekete, S.P.: What is the optimal shape of a city? J. Physics A: Mathematical and General 37(1), 147–159 (2004)
Bender, M.A., Bunde, D.P., Demaine, E.D., Fekete, S.P., Leung, V.J., Meijer, H., Phillips, C.A.: Communication-Aware Processor Allocation for Supercomputers: Finding Point Sets of Small Average Distance. Algorithmica 50(2), 279–298 (2008)
Dai, H.K., Su, H.C.: On the Locality Properties of Space-Filling Curves. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 385–394. Springer, Heidelberg (2003)
de Berg, M., Speckmann, B., van der Weele, V.: Treemaps with bounded aspect ratio. CoRR, abs/1012.1749 (2010)
Demaine, E.D., Fekete, S.P., Rote, G., Schweer, N., Schymura, D., Zelke, M.: Integer point sets minimizing average pairwise L1 distance: What is the optimal shape of a town? Comp. Geom. 40, 82–94 (2011)
Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling curves. IEEE Transactions on Image Processing 5(5), 794–797 (1996)
Karp, R.M., McKellar, A.C., Wong, C.K.: Near-Optimal Solutions to a 2-Dimensional Placement Problem. SIAM J. Computing 4(3), 271–286 (1975)
Krumke, S., Marathe, M., Noltemeier, H., Radhakrishnan, V., Ravi, S., Rosenkrantz, D.: Compact location problems. Theor. Comput. Sci. 181(2), 379–404 (1997)
Leung, J.Y.-T., Tam, T.W., Wing, C.S., Young, G.H., Chin, F.Y.: Packing squares into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990)
Leung, V.J., Arkin, E.M., Bender, M.A., Bunde, D.P., Johnston, J., Lal, A., Mitchell, J.S.B., Phillips, C.A., Seiden, S.S.: Processor Allocation on Cplant: Achieving General Processor Locality Using One-Dimensional Allocation Strategies. In: Proc. IEEE CLUSTER 2002, pp. 296–304 (2002)
Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-indexings. Discrete Applied Mathematics 117(1-3), 211–237 (2002)
Sagan, H.: Space-Filling Curves. Springer, New York (1994)
Schweer, N.: Algorithms for Packing Problems. PhD thesis, Braunschweig (2010)
Siromoney, R., Subramanian, K.: Space-filling Curves and Infinite Graphs. In: Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 380–391. Springer, Heidelberg (1983)
Wattenberg, M.: A note on space-filling visualizations and space-filling curves. In: Proceedings of the IEEE Symposium on Information Visualization, INFOVIS, pp. 181–186 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fekete, S.P., Schweer, N., Reinhardt, JM. (2013). A Competitive Strategy for Distance-Aware Online Shape Allocation. In: Ghosh, S.K., Tokuyama, T. (eds) WALCOM: Algorithms and Computation. WALCOM 2013. Lecture Notes in Computer Science, vol 7748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36065-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-36065-7_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36064-0
Online ISBN: 978-3-642-36065-7
eBook Packages: Computer ScienceComputer Science (R0)