Linear-Time Constant-Ratio Approximation Algorithm and Tight Bounds for the Contiguity of Cographs | SpringerLink
Skip to main content

Linear-Time Constant-Ratio Approximation Algorithm and Tight Bounds for the Contiguity of Cographs

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7748))

Included in the following conference series:

  • 1008 Accesses

Abstract

In this paper we consider a graph parameter called contiguity which aims at encoding a graph by a linear ordering of its vertices. We prove that the contiguity of cographs is unbounded but is always dominated by O(logn), where n is the number of vertices of the graph. And we prove that this bound is tight in the sense that there exists a family of cographs on n vertices whose contiguity is Ω(logn). In addition to these results on the worst-case contiguity of cographs, we design a linear-time constant-ratio approximation algorithm for computing the contiguity of an arbitrary cograph, which constitutes our main result. As a by-product of our proofs, we obtain a min-max theorem, which is worth of interest in itself, stating equality between the rank of a tree and the minimum height its path partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Turan, G.: On the succinct representation of graphs. Discr. Appl. Math. 8, 289–294 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In: WWW 2004, pp. 595–602. ACM (2004)

    Google Scholar 

  3. Boldi, P., Vigna, S.: Codes for the world wide web. Internet Mathematics 2(4), 407–429 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crespelle, C., Gambette, P.: Efficient Neighborhood Encoding for Interval Graphs and Permutation Graphs and O(n) Breadth-First Search. In: Fiala, J., Kratochvíl, J., Miller, M. (eds.) IWOCA 2009. LNCS, vol. 5874, pp. 146–157. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Goldberg, P., Golumbic, M., Kaplan, H., Shamir, R.: Four strikes against physical mapping of DNA. Journal of Computational Biology 2(1), 139–152 (1995)

    Article  Google Scholar 

  6. Brandstädt, A., Le, V., Spinrad, J.: Graph Classes: a Survey. SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  7. Roberts, F.: Representations of indifference relations, Ph.D. thesis, Stanford University (1968)

    Google Scholar 

  8. Johnson, D., Krishnan, S., Chhugani, J., Kumar, S., Venkatasubramanian, S.: Compressing large boolean matrices using reordering techniques. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, VLDB 2004, vol. 30, pp. 13–23 (2004)

    Google Scholar 

  9. Wang, R., Lau, F., Zhao, Y.: Hamiltonicity of regular graphs and blocks of consecutive ones in symmetric matrices. Discr. Appl. Math. 155(17), 2312–2320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gavoille, C., Peleg, D.: The compactness of interval routing. SIAM Journal on Discrete Mathematics 12(4), 459–473 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ehrenfeucht, D.H.A.: Learning decision trees from random examples. Information and Computation 82(3), 231–246 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gavaldà, R., Thérien, D.: Algebraic Characterizations of Small Classes of Boolean Functions. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 331–342. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Lováz, L.: Graph minor theory. Bulletin of the American Mathematical Society 43(1), 75–86 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crespelle, C., Gambette, P. (2013). Linear-Time Constant-Ratio Approximation Algorithm and Tight Bounds for the Contiguity of Cographs. In: Ghosh, S.K., Tokuyama, T. (eds) WALCOM: Algorithms and Computation. WALCOM 2013. Lecture Notes in Computer Science, vol 7748. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36065-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36065-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36064-0

  • Online ISBN: 978-3-642-36065-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics