Online Boosting Tracking with Fragmented Model | SpringerLink
Skip to main content

Online Boosting Tracking with Fragmented Model

  • Conference paper
Advances in Multimedia Modeling

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7733))

  • 1941 Accesses

Abstract

We propose a novel method combining online boosting and fragment to overcome the drifting problem in on-line boosting tracking. We find that in previous on-line boosting method, the voting weights of the first few selectors are so big that the remainders can not affect the final strong classifier. This problem occurs because the voting weight of selectors are passing globally to adapt to the object variation, but usually only parts of object changes significantly in short time, and the changing part only affect its neighborhood, not the whole target area. So we divide the selector into fragments to get spatial information. The best weak classifier in each selector is combined linearly to get the final strong classifier and then find the location of the object in next frame. Experiments show robustness and generality of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Trans. PAMI 27(10), 1631–1643 (2005)

    Article  Google Scholar 

  2. Lim, J., Ross, D., Lin, R., Yang, M.: Incremental learning for visual tracking. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) NIPS, vol. (17), pp. 793–800. MIT Press (2005)

    Google Scholar 

  3. Avidan, S.: Ensemble tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 494–501 (2005)

    Google Scholar 

  4. Grabner, H., Bischof, H.: On-line boosting and vision. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 260–267 (2006)

    Google Scholar 

  5. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Proceedings of BMVC, vol. 1, pp. 47–56 (2006)

    Google Scholar 

  6. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Kalal, Z., Matas, J., Mikolajczyk, K.: P-n learning: Bootstrapping binary classifiers by structural constraints. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 49–56 (2010)

    Google Scholar 

  8. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 798–805 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shen, D., Zhang, H., Xue, Y., Xu, G., Gao, Z. (2013). Online Boosting Tracking with Fragmented Model. In: Li, S., et al. Advances in Multimedia Modeling. Lecture Notes in Computer Science, vol 7733. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35728-2_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35728-2_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35727-5

  • Online ISBN: 978-3-642-35728-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics