Modelling the Effect of Genes on the Dynamics of Probabilistic Spiking Neural Networks for Computational Neurogenetic Modelling | SpringerLink
Skip to main content

Modelling the Effect of Genes on the Dynamics of Probabilistic Spiking Neural Networks for Computational Neurogenetic Modelling

  • Conference paper
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2011)

Abstract

Computational neuro-genetic models (CNGM) combine two dynamic models – a gene regulatory network (GRN) model at a lower level, and a spiking neural network (SNN) model at a higher level to model the dynamic interaction between genes and spiking patterns of activity under certain conditions. The paper demonstrates that it is possible to model and trace over time the effect of a gene on the total spiking behavior of the SNN when the gene controls a parameter of a stochastic spiking neuron model used to build the SNN. Such CNGM can be potentially used to study neurodegenerative diseases or develop CNGM for cognitive robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin 50(5-6) (1999)

    Google Scholar 

  2. Benuskova, L., Kasabov, N.: Computational Neurogenetic Modelling. Springer, NY (2007)

    Book  Google Scholar 

  3. Clopath, C., Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W.: Predicting neuronal activity with simple models of the threshold type: Adaptive exponential integrate-and-fire model with two compartments. Neurocomput. 70(10-12), 1668–1673 (2007)

    Article  Google Scholar 

  4. Fogel, D.B.: Evolutionary computation - toward a new philosophy of machine intelligence, 3rd edn. Wiley-VCH (2006)

    Google Scholar 

  5. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  6. Grzyb, B.J., Chinellato, E., Wojcik, G.M., Kaminski, W.A.: Which model to use for the liquid state machine? In: IJCNN 2009: Proceedings of the 2009 International Joint Conference on Neural Networks, pp. 1692–1698. IEEE Press, Piscataway (2009)

    Google Scholar 

  7. Holter, J.L., Humphries, A., Crunelli, V., Carter, D.A.: Optimisation of methods for selecting candidate genes from cdna array screens: application to rat brain punches and pineal. Journal of Neuroscience Methods 112(2), 173–184 (2001)

    Article  Google Scholar 

  8. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland (2007)

    Google Scholar 

  9. Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer, London (2007)

    MATH  Google Scholar 

  10. Kasabov, N.: Evolving intelligence in humans and machines: Integrative connectionist systems approach (feature article). IEEE Computational Intelligence Magazine 3(3), 23–37 (2008)

    Article  Google Scholar 

  11. Kasabov, N.: Integrative connectionist learning systems inspired by nature: current models, future trends and challenges. Natural Computing 8, 199–218 (2009), http://dx.doi.org/10.1007/s11047-008-9066-z , doi:10.1007/s11047-008-9066-z

    Article  MathSciNet  MATH  Google Scholar 

  12. Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neural Networks 23(1), 16–19 (2010)

    Article  Google Scholar 

  13. Kasabov, N., Benuskova, L.: Computational neurogenetics. Journal of Computational and Theoretical Nanoscience 1, 47–61 (2004)

    Article  Google Scholar 

  14. Kasabov, N., Benuskova, L.: Theoretical and computational models for neuro, genetic, and neurogenetic information processing. In: Rieth, M., Schommers, W. (eds.) Handbook of Computational and Theoretical Nanotechnology, ch. 41. American Scientific Publishers, Los Angeles (2005)

    Google Scholar 

  15. Kasabov, N., Benuskova, L., Wysoski, S.G.: Biologically plausible computational neurogenetic models: Modeling the interaction between genes, neurons and neural networks. Journal of Computational and Theoretical Nanoscience 2, 569–573 (2005)

    Article  Google Scholar 

  16. Kasabov, N., Schliebs, R., Kojima, H.: Probabilistic computational neurogenetic framework: From modelling cognitive systems to alzheimer’s desease. IEEE Trans. on Autonomous Mental Development 3(4), 300–311 (2011)

    Article  Google Scholar 

  17. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  18. Maass, W., Zador, A.: Dynamic stochastic synapses as computational units. In: Advances in Neural Information Processing Systems, pp. 903–917. MIT Press (1999)

    Google Scholar 

  19. Marcus, G.F.: The Birth Of The Mind: How A Tiny Number of Genes Creates the Complexities of Human Thought. Basic Books (March 2005)

    Google Scholar 

  20. Meng, Y., Jin, Y., Yin, J., Conforth, M.: Human activity detection using spiking neural networks regulated by a gene regulatory network. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (July 2010)

    Google Scholar 

  21. Morse, A., de Greeff, J., Belpeame, T., Cangelosi, A.: Epigenetic robotics architecture (era). IEEE Transactions on Autonomous Mental Development 2(4), 325–339 (2010)

    Article  Google Scholar 

  22. NCBI: The nervous system, in genes and disease. National Centre for Biotechnology Information (2003), http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=gnd.chapter.75

  23. Villa, A.E.P., Asai, Y., Tetko, I.V., Pardo, B., Celio, M.R., Schwaller, B.: Cross-channel coupling of neuronal activity in parvalbumin-deficient mice susceptible to epileptic seizures. Epilepsia 46(suppl. 6), 359 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kasabov, N., Schliebs, S., Mohemmed, A. (2012). Modelling the Effect of Genes on the Dynamics of Probabilistic Spiking Neural Networks for Computational Neurogenetic Modelling. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2011. Lecture Notes in Computer Science(), vol 7548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35686-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35686-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35685-8

  • Online ISBN: 978-3-642-35686-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics