Abstract
Computational neuro-genetic models (CNGM) combine two dynamic models – a gene regulatory network (GRN) model at a lower level, and a spiking neural network (SNN) model at a higher level to model the dynamic interaction between genes and spiking patterns of activity under certain conditions. The paper demonstrates that it is possible to model and trace over time the effect of a gene on the total spiking behavior of the SNN when the gene controls a parameter of a stochastic spiking neuron model used to build the SNN. Such CNGM can be potentially used to study neurodegenerative diseases or develop CNGM for cognitive robotics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain Research Bulletin 50(5-6) (1999)
Benuskova, L., Kasabov, N.: Computational Neurogenetic Modelling. Springer, NY (2007)
Clopath, C., Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W.: Predicting neuronal activity with simple models of the threshold type: Adaptive exponential integrate-and-fire model with two compartments. Neurocomput. 70(10-12), 1668–1673 (2007)
Fogel, D.B.: Evolutionary computation - toward a new philosophy of machine intelligence, 3rd edn. Wiley-VCH (2006)
Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)
Grzyb, B.J., Chinellato, E., Wojcik, G.M., Kaminski, W.A.: Which model to use for the liquid state machine? In: IJCNN 2009: Proceedings of the 2009 International Joint Conference on Neural Networks, pp. 1692–1698. IEEE Press, Piscataway (2009)
Holter, J.L., Humphries, A., Crunelli, V., Carter, D.A.: Optimisation of methods for selecting candidate genes from cdna array screens: application to rat brain punches and pineal. Journal of Neuroscience Methods 112(2), 173–184 (2001)
van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland (2007)
Kasabov, N.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer, London (2007)
Kasabov, N.: Evolving intelligence in humans and machines: Integrative connectionist systems approach (feature article). IEEE Computational Intelligence Magazine 3(3), 23–37 (2008)
Kasabov, N.: Integrative connectionist learning systems inspired by nature: current models, future trends and challenges. Natural Computing 8, 199–218 (2009), http://dx.doi.org/10.1007/s11047-008-9066-z , doi:10.1007/s11047-008-9066-z
Kasabov, N.: To spike or not to spike: A probabilistic spiking neuron model. Neural Networks 23(1), 16–19 (2010)
Kasabov, N., Benuskova, L.: Computational neurogenetics. Journal of Computational and Theoretical Nanoscience 1, 47–61 (2004)
Kasabov, N., Benuskova, L.: Theoretical and computational models for neuro, genetic, and neurogenetic information processing. In: Rieth, M., Schommers, W. (eds.) Handbook of Computational and Theoretical Nanotechnology, ch. 41. American Scientific Publishers, Los Angeles (2005)
Kasabov, N., Benuskova, L., Wysoski, S.G.: Biologically plausible computational neurogenetic models: Modeling the interaction between genes, neurons and neural networks. Journal of Computational and Theoretical Nanoscience 2, 569–573 (2005)
Kasabov, N., Schliebs, R., Kojima, H.: Probabilistic computational neurogenetic framework: From modelling cognitive systems to alzheimer’s desease. IEEE Trans. on Autonomous Mental Development 3(4), 300–311 (2011)
Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)
Maass, W., Zador, A.: Dynamic stochastic synapses as computational units. In: Advances in Neural Information Processing Systems, pp. 903–917. MIT Press (1999)
Marcus, G.F.: The Birth Of The Mind: How A Tiny Number of Genes Creates the Complexities of Human Thought. Basic Books (March 2005)
Meng, Y., Jin, Y., Yin, J., Conforth, M.: Human activity detection using spiking neural networks regulated by a gene regulatory network. In: The 2010 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (July 2010)
Morse, A., de Greeff, J., Belpeame, T., Cangelosi, A.: Epigenetic robotics architecture (era). IEEE Transactions on Autonomous Mental Development 2(4), 325–339 (2010)
NCBI: The nervous system, in genes and disease. National Centre for Biotechnology Information (2003), http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowSection&rid=gnd.chapter.75
Villa, A.E.P., Asai, Y., Tetko, I.V., Pardo, B., Celio, M.R., Schwaller, B.: Cross-channel coupling of neuronal activity in parvalbumin-deficient mice susceptible to epileptic seizures. Epilepsia 46(suppl. 6), 359 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kasabov, N., Schliebs, S., Mohemmed, A. (2012). Modelling the Effect of Genes on the Dynamics of Probabilistic Spiking Neural Networks for Computational Neurogenetic Modelling. In: Biganzoli, E., Vellido, A., Ambrogi, F., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2011. Lecture Notes in Computer Science(), vol 7548. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35686-5_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-35686-5_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35685-8
Online ISBN: 978-3-642-35686-5
eBook Packages: Computer ScienceComputer Science (R0)