Abstract
Schur-Weyl duality is a powerful tool in representation theory which has many applications to quantum information theory. We provide a generalization of this duality and demonstrate some of its applications. In particular, we use it to develop a general framework for the study of a family of quantum estimation problems wherein one is given n copies of an unknown quantum state according to some prior and the goal is to estimate certain parameters of the given state. In particular, we are interested to know whether collective measurements are useful and if so to find an upper bound on the amount of entanglement which is required to achieve the optimal estimation. In the case of pure states, we show that commutativity of the set of observables that define the estimation problem implies the sufficiency of unentangled measurements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups Cambridge University Press (1998)
Harrow, A.: Applications of coherent classical communication and the Schur transform to quantum information theory. PhD thesis, MIT, Arxiv preperint arXiv:quant-ph/0512255 (2005)
Marvian, I., Spekkens, R.W.: A generalization of Schur-Weyl duality with applications in quantum estimation, arXiv:1112.0638
Hayashi, A., Horibe, M., Hashimoto, T.: Phys. Rev. A 73, 062322 (2006)
Holevo, A.: Probabilistic and Statistical Aspects of Quantum Theory. Scuola Normale Superiore, Monographs (2011)
Chiribella, G.: Optimal estimation of quantum signals in the presence of symmetry. PhD thesis, University of Pavia, Pavia, Italy (2006)
Zyczkowski, K., Sommers, H.J.: J. Phys. A 34, 7111–7125 (2001), quant-ph/0012101
Zanardi, P., Rasetti, M.: Phys. Rev. Lett. 79, 3306 (1997); Zanardi, P.: Phys. Rev. A 63, 012301 (2000)
Knill, E., et al.: Phys. Rev. Lett. 84, 2525 (2000); Kempe, J., et al.: Phys. Rev. A 63, 042307 (2001)
Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Phys. Rev. Lett. 91, 027901 (2003)
Helstrom, C.W.: Quantum detection and estimation theory. Academic Press (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marvian, I., Spekkens, R.W. (2013). Applying a Generalization of Schur-Weyl Duality to Problems in Quantum Information and Estimation. In: Iwama, K., Kawano, Y., Murao, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2012. Lecture Notes in Computer Science, vol 7582. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35656-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-35656-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35655-1
Online ISBN: 978-3-642-35656-8
eBook Packages: Computer ScienceComputer Science (R0)