What Is Fuzzy Logic – And Why It Matters to Us | SpringerLink
Skip to main content

What Is Fuzzy Logic – And Why It Matters to Us

  • Chapter
On Fuzziness

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 298))

  • 1763 Accesses

Abstract

The aim of this short note is twofold: recounting how our research group became interested in fuzzy logic, and briefly discussing a definition of fuzzy logic suggested by Bĕhounek and Cintula (see [1]). Lest the anecdotal incipit should be dismissed (perhaps deservedly) with a blunt So what?, we remind that prospective contributors to this volume are required to mention how they arrived to the field of fuzzy logic and to present their views and expectations ‘on fuzziness’. Both aims, therefore, seem to sit comfortably within the scopes of this book, especially in view of the fact that Lofti Zadeh has always been concerned with the problem of delimiting the boundaries of the subject he pioneered (see e.g. his [16]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bĕhounek, L., Cintula, P.: Fuzzy Logic as the Logic of Chains. Fuzzy Sets and Systems 157, 604–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bĕhounek, L., Cintula, P., Hájek, P.: Introduction to Mathematical Fuzzy Logic. In: Hájek, P., Cintula, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic. College Publications, London (forthcoming)

    Google Scholar 

  3. Berman, J., Blok, W.J.: Algebras Defined From Ordered Sets and the Varieties they Generate. Order 23(1), 65–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bou, F., Paoli, F., Ledda, A., Spinks, M., Giuntini, R.: The Logic of Quasi-MV Algebras. Journal of Logic and Computation 20(2), 619–643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casari, E.: Conjoining and disjoining on different levels. In: Dalla Chiara, M.L., Kees, D. (eds.) Logic and Scientific Methods, pp. 261–288. Kluwer, Dordrecht (1997)

    Google Scholar 

  6. Cintula, P., Noguera, C.: Implicational (Semilinear) Logics I: A New Hierarchy. Archive for Mathematical Logic 49, 417–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dalla Chiara, M.L., Giuntini, R., Greechie, R.: Reasoning in Quantum Theory. Kluwer, Dordrecht (2004)

    MATH  Google Scholar 

  8. Font, J.M.: Taking degrees of truth seriously. Studia Logica 91, 383–406 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giuntini, R.: Quantum MV Algebras. Studia Logica 56, 393–417 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giuntini, R., Ledda, A., Paoli, F.: Expanding Quasi-MV Algebras by a Quantum Operator. Studia Logica 87(1), 99–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Horčik, R., Petr Cintula, P.: Product Łukasiewicz Logic. Archive for Mathematical Logic 43(4), 477–503 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ledda, A., Konig, M., Paoli, F., Giuntini, R.: MV Algebras and Quantum Computation. Studia Logica 82(2), 245–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ludwig, G.: Foundations of Quantum Mechanics. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  14. Paoli, F., Ledda, A., Spinks, M., Freytes, H., Giuntini, R.: Logics From Square Root Quasi-MV Algebras. International Journal of Theoretical Physics 50, 3882–3902 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wójcicki, R.: Theory of Logical Calculi. Reidel, Dordrecht (1988)

    MATH  Google Scholar 

  16. Zadeh Lotfit, L.: Fuzzy Logic and Approximate Reasoning. Synthese 30, 407–425 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giuntini, R., Paoli, F., Freytes, H., Ledda, A., Sergioli, G. (2013). What Is Fuzzy Logic – And Why It Matters to Us. In: Seising, R., Trillas, E., Moraga, C., Termini, S. (eds) On Fuzziness. Studies in Fuzziness and Soft Computing, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35641-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35641-4_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35640-7

  • Online ISBN: 978-3-642-35641-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics