Abstract
In most efficient exponentiation implementations, recovering the secret exponent is equivalent to disclosing the sequence of squaring and multiplication operations. Some known attacks on the RSA exponentiation apply this strategy, but cannot be used against classical blinding countermeasures. In this paper, we propose new attacks distinguishing squaring from multiplications using a single side-channel trace. It makes our attacks more robust against blinding countermeasures than previous methods even if both exponent and message are randomized, whatever the quality and length of random masks. We demonstrate the efficiency of our new techniques using simulations in different noise configurations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.P.: Distinguishing Multiplications from Squaring Operations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 346–360. Springer, Heidelberg (2009)
Amiel, F., Feix, B., Villegas, K.: Power Analysis for Secret Recovering and Reverse Engineering of Public Key Algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007)
Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)
Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost Solutions for Preventing Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Transactions on Computers 53(6), 760–768 (2004)
Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal Correlation Analysis on Exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)
Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)
Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Square Always Exponentiation. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 40–57. Springer, Heidelberg (2011)
Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)
Dhem, J.-F.: Design of an efficient public-key cryptographic library for RISC-based smart cards. PhD thesis, Université catholique de Louvain, Louvain (1998)
Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)
Garner, H.: The Residue Number System. IRE Transactions on Electronic Computers 8(6), 140–147 (1959)
Joye, M.: Highly Regular m-Ary Powering Ladders. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer, Heidelberg (2009)
Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)
Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
Messerges, T.S.: Using Second-order Power Analysis to Attack DPA Resistant Software. In: Koç, Ç., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)
Messerges, T., Dabbish, E., Sloan, R.: Investigations of Power Analysis Attacks on Smartcards. In: The USENIX Workshop on Smartcard Technology (Smartcard 1999), pp. 151–161 (1999)
Montgomery, P.: Modular multiplication without trial division. Math. Comp. 44(170), 519–521 (1985)
Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)
PKCS #1. RSA Cryptography Specifications Version 2.1. RSA Laboratories (2003)
Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)
Schindler, W., Itoh, K.: Exponent Blinding Does Not Always Lift (Partial) Spa Resistance to Higher-Level Security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 73–90. Springer, Heidelberg (2011)
Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)
Verneuil, V.: Elliptic Curve Cryptography and Security of Embedded Devices. PhD thesis, Université de Bordeaux, Bordeaux (2012)
Walter, C.D.: Sliding Windows Succumbs to Big Mac Attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer, Heidelberg (2001)
Witteman, M., van Woudenberg, J., Menarini, F.: Defeating RSA Multiply-Always and Message Blinding Countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V. (2012). ROSETTA for Single Trace Analysis. In: Galbraith, S., Nandi, M. (eds) Progress in Cryptology - INDOCRYPT 2012. INDOCRYPT 2012. Lecture Notes in Computer Science, vol 7668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34931-7_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-34931-7_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34930-0
Online ISBN: 978-3-642-34931-7
eBook Packages: Computer ScienceComputer Science (R0)