ROSETTA for Single Trace Analysis | SpringerLink
Skip to main content

ROSETTA for Single Trace Analysis

Recovery Of Secret Exponent by Triangular Trace Analysis

  • Conference paper
Progress in Cryptology - INDOCRYPT 2012 (INDOCRYPT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7668))

Included in the following conference series:

Abstract

In most efficient exponentiation implementations, recovering the secret exponent is equivalent to disclosing the sequence of squaring and multiplication operations. Some known attacks on the RSA exponentiation apply this strategy, but cannot be used against classical blinding countermeasures. In this paper, we propose new attacks distinguishing squaring from multiplications using a single side-channel trace. It makes our attacks more robust against blinding countermeasures than previous methods even if both exponent and message are randomized, whatever the quality and length of random masks. We demonstrate the efficiency of our new techniques using simulations in different noise configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.P.: Distinguishing Multiplications from Squaring Operations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 346–360. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Amiel, F., Feix, B., Villegas, K.: Power Analysis for Secret Recovering and Reverse Engineering of Public Key Algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost Solutions for Preventing Simple Side-Channel Analysis: Side-Channel Atomicity. IEEE Transactions on Computers 53(6), 760–768 (2004)

    Article  Google Scholar 

  5. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal Correlation Analysis on Exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Square Always Exponentiation. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 40–57. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Coron, J.-S.: Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Dhem, J.-F.: Design of an efficient public-key cryptographic library for RISC-based smart cards. PhD thesis, Université catholique de Louvain, Louvain (1998)

    Google Scholar 

  10. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Garner, H.: The Residue Number System. IRE Transactions on Electronic Computers 8(6), 140–147 (1959)

    Google Scholar 

  12. Joye, M.: Highly Regular m-Ary Powering Ladders. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 350–363. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Google Scholar 

  15. Messerges, T.S.: Using Second-order Power Analysis to Attack DPA Resistant Software. In: Koç, Ç., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Messerges, T., Dabbish, E., Sloan, R.: Investigations of Power Analysis Attacks on Smartcards. In: The USENIX Workshop on Smartcard Technology (Smartcard 1999), pp. 151–161 (1999)

    Google Scholar 

  17. Montgomery, P.: Modular multiplication without trial division. Math. Comp. 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. PKCS #1. RSA Cryptography Specifications Version 2.1. RSA Laboratories (2003)

    Google Scholar 

  20. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schindler, W., Itoh, K.: Exponent Blinding Does Not Always Lift (Partial) Spa Resistance to Higher-Level Security. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 73–90. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Schramm, K., Wollinger, T., Paar, C.: A New Class of Collision Attacks and its Application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–222. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Verneuil, V.: Elliptic Curve Cryptography and Security of Embedded Devices. PhD thesis, Université de Bordeaux, Bordeaux (2012)

    Google Scholar 

  24. Walter, C.D.: Sliding Windows Succumbs to Big Mac Attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Witteman, M., van Woudenberg, J., Menarini, F.: Defeating RSA Multiply-Always and Message Blinding Countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V. (2012). ROSETTA for Single Trace Analysis. In: Galbraith, S., Nandi, M. (eds) Progress in Cryptology - INDOCRYPT 2012. INDOCRYPT 2012. Lecture Notes in Computer Science, vol 7668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34931-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34931-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34930-0

  • Online ISBN: 978-3-642-34931-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics