Image Edge Detection and Orientation Selection with Coupled Nonlinear Excitable Elements | SpringerLink
Skip to main content

Image Edge Detection and Orientation Selection with Coupled Nonlinear Excitable Elements

  • Chapter
Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 459))

  • 1111 Accesses

Abstract

This chapter presents an image-processing algorithm for edge detection and orientation selection with discretely coupled nonlinear elements. The algorithm utilizes the nonlinear characteristic of the FitzHugh-Nagumo model and arranges the elements on an image grid system. Themodel is described with a pair of ordinary differential equations with activator and inhibitor variables, and exhibits mono-stable excitability. It was previously found that a grid system consisting of mono-stable nonlinear elements self-organizes pulses at crossing points between an initial activator distribution and a threshold level. In particular, the imposition of strong inhibitory coupling on the grid system causes stationary pulses at the crossing points. The algorithm presented here focuses on the phenomenon in which the grid system self-organizes stationary pulses at the crossing points. In addition, the algorithm introduces anisotropic coupling strength into the grid system; the coupling strength is decided according to the difference between the gradient direction of the inhibitor distribution and the specific orientation. An experimental section demonstrates the results of edge detection and orientation selection for artificial and real images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Murray, J.D.: Mathematical Biology. Springer, Berlin (1989)

    MATH  Google Scholar 

  2. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  3. Zaikin, A.N., Zhabotinsky, A.M.: Concentration wave propagation in two-dimensional liquid-phase self-oscillating system. Nature 225, 535–537 (1970)

    Article  Google Scholar 

  4. Busse, H., Hess, B.: Information transmission in a diffusion-coupled oscillatory chemical system. Nature 244, 203–205 (1973)

    Article  Google Scholar 

  5. Kuhnert, L., Agladze, K.I.: Krinsky VI Image processing using light-sensitive chemical waves. Nature 337, 244–247 (1989)

    Article  Google Scholar 

  6. Wang, D.L., Terman, D.: Locally excitatory globally inhibitory oscillatory networks. IEEE Trans. Neural Netw. 6, 283–286 (1995)

    Article  Google Scholar 

  7. Chen, K., Wang, D.L.: A dynamically coupled neural oscillator network for image segmentation. Neural Netw. 15, 423–439 (2002)

    Article  MATH  Google Scholar 

  8. Nomura, A., Ichikawa, M., Miike, H., Ebihara, M., Mahara, H., Sakurai, T.: Realizing visual functions with the reaction-diffusion mechanism. J. Phys. Soc. Jpn. 72, 2385–2395 (2003)

    Article  Google Scholar 

  9. Ebihara, M., Mahara, H., Sakurai, T., Nomura, A., Osa, A., Miike, H.: Segmentation and edge detection of noisy image and low contrast image based on a reaction-diffusion model. J. IIEEJ 32, 378–385 (2003)

    Google Scholar 

  10. Kurata, N., Kitahata, H., Mahara, H., Nomura, A., Miike, H., Sakurai, T.: Stationary pattern formation in a discrete excitable system with strong inhibitory coupling. Phys. Rev. E 79, 056203 (2009)

    Google Scholar 

  11. Shoji, H., Iwasa, Y., Mochizuki, A., Kondo, S.: Directionality of stripes formed by anisotropic reaction-diffusion models. J. Theor. Biol. 214, 549–561 (2002)

    Article  MathSciNet  Google Scholar 

  12. Marr, D., Hildreth, E.: Theory of edge detection. Proc. Roy. Soc. Lond. Ser. B, Biol. Sci. 207, 187–217 (1980)

    Article  Google Scholar 

  13. Canny, J.: A computational approach to edge detection. IEEE Trans. Patt. Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  14. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  15. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  16. Tyson, J.J., Alexander, K.A., Manoranjan, V.S., Murray, J.D.: Spiral waves of cyclic AMP in a model of slime mold aggregation. Phys. D 34, 193–207 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. Ser. B, Biol. Sci. 237, 37–72 (1952)

    Article  Google Scholar 

  18. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  19. Castets, V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990)

    Article  Google Scholar 

  20. Kondo, S., Asai, R.: A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995)

    Article  Google Scholar 

  21. Matsumoto, T.: A chaotic attractor from Chua’s circuit. IEEE Trans. Circ. Syst. 31, 1055–1058 (1984)

    Article  MATH  Google Scholar 

  22. Chua, L.O., Hasler, M., Moschytz, G.S., Neirynck, J.: Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans. Circ. 42, 559–577 (1995)

    MathSciNet  Google Scholar 

  23. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  25. Rekeczky, C.: CNN architectures for constrained diffusion based locally adaptive image processing. Int. J. Circ. Theor. Appl. 30, 313–348 (2002)

    Article  MATH  Google Scholar 

  26. Barlow, R.B.: Jr, Quarles DA Jr Mach bands in the lateral eye of Limulus. J. Gen. Physiol. 65, 709–730 (1975)

    Article  Google Scholar 

  27. Ferster, D., Koch, C.: Neuronal connections underlying orientation selectivity in cat visual cortex. Trends in Neurosci. 10, 487–492 (1987)

    Article  Google Scholar 

  28. Heath, M., Sarkar, S., Sanocki, T., Bowyer, K.: http://marathon.csee.usf.edu/edge/edge_detection.html

  29. Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: A robust visual method for assessing the relative performance of edge-detection algorithms. IEEE Trans. Patt. Anal. Mach. Intell. 19, 1338–1359 (1997)

    Article  Google Scholar 

  30. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Patt. Anal. Mach. Intell. 26, 530–549 (2004)

    Article  Google Scholar 

  31. Mrázek, P., Navara, M.: Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comp. Vis. 52, 189–203 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Nomura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nomura, A., Mizukami, Y., Okada, K., Ichikawa, M. (2013). Image Edge Detection and Orientation Selection with Coupled Nonlinear Excitable Elements. In: Kyamakya, K., Halang, W., Mathis, W., Chedjou, J., Li, Z. (eds) Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering. Studies in Computational Intelligence, vol 459. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34560-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34560-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34559-3

  • Online ISBN: 978-3-642-34560-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics