Abstract
The Dendritic Cell Algorithm (DCA) is an immune-inspired classification algorithm based on the behavior of dendritic cells. The DCA performance depends on its data pre-processing phase including feature selection and their categorization to specific signal types. For feature selection, DCA applies the principal component analysis (PCA). Nevertheless, PCA does not guarantee that the selected first principal components will be the most adequate for classification. Furthermore, the categorization of features to their specific signal types is based on the PCA attributes’ ranking in terms on variability which does not make “sense”. Thus, the aim of this paper is to develop a new DCA data pre-processing method based on Rough Set Theory (RST). In this newly-proposed hybrid DCA model, the selection and the categorization of attributes are based on the RST CORE and REDUCT concepts. Results show that using RST instead of PCA for the DCA data pre-processing phase yields much better performance in terms of classification accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007)
Chelly, Z., Elouedi, Z.: FDCM: A Fuzzy Dendritic Cell Method. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) ICARIS 2010. LNCS, vol. 6209, pp. 102–115. Springer, Heidelberg (2010)
Chelly, Z., Elouedi, Z.: Further Exploration of the Fuzzy Dendritic Cell Method. In: Liò, P., Nicosia, G., Stibor, T. (eds.) ICARIS 2011. LNCS, vol. 6825, pp. 419–432. Springer, Heidelberg (2011)
Chelly, Z., Smiti, A., Elouedi, Z.: COID-FDCM: The Fuzzy Maintained Dendritic Cell Classification Method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 233–241. Springer, Heidelberg (2012)
Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)
Gu, F., Greensmith, J., Oates, R., Aickelin, U.: Pca 4 dca: The application of principal component analysis to the dendritic cell algorithm. CoRR (2010)
Kaiser, H.: A note on guttmans lower bound for the number of common factors. British Journal of Mathematical and Statistical Psychology 14, 1–2 (1961)
Pawlak, Z., Rough, S.: International Journal of Computer and Information Science 11, 341–356 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chelly, Z., Elouedi, Z. (2012). RST-DCA: A Dendritic Cell Algorithm Based on Rough Set Theory. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34487-9_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-34487-9_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34486-2
Online ISBN: 978-3-642-34487-9
eBook Packages: Computer ScienceComputer Science (R0)