A Self-Organizing Maps Multivariate Spatio-temporal Approach for the Classification of Atmospheric Conditions | SpringerLink
Skip to main content

A Self-Organizing Maps Multivariate Spatio-temporal Approach for the Classification of Atmospheric Conditions

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7666))

Included in the following conference series:

Abstract

This work demonstrates the potential of Self-Organizing Maps (SOM) as a multivariate clustering approach of spatio-temporal datasets in atmospheric physics. A comprehensive framework is proposed and the method is applied and assessed for its performance in the field of synoptic climatology within a specific region at southeastern Mediterranean. The results indicate that the SOM can be a powerful tool for the identification and classification of atmospheric conditions, allowing an analytical description of the principal atmospheric states. The coupling of sea level pressure (SLP) and 500hPa geopotential (Φ500) in a synoptic-scale domain with the wind, the specific humidity and the air and dew point temperature in the chosen mesoscale subdomain, allows the SOM algorithm to define the relevant atmospheric circulation patterns. The corresponding patterns are well documented and the method accounts for their seasonality. Furthermore, in the resulting two-dimensional lattice the similar patterns are mapped closer to each other, compared to more dissimilar ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yarnal, B.: Synoptic Climatology in Environmental Analysis: A primer. Belhaven Press, London (1993)

    Google Scholar 

  2. Beck, C., Philipp, A.: Evaluation and comparison of circulation type classifications for the European domain. Phys. Chem. Earth, Parts A/B/C 35, 9–12, 374–387 (2010)

    Google Scholar 

  3. Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynova, M., Kysely, J., Tveito, O.E.: Classifications of Atmospheric Circulation Patterns. Ann. N.Y. Acad. Sci. 1146, 105–152 (2008)

    Article  Google Scholar 

  4. Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp, F., Krennert, T., Lykoudis, S., Michaelides, S.C., Pianko-Kluczynska, K., Post, P., Rasilla Álvarez, D., Schiemann, R., Spekat, A., Tymvios, F.S.: Cost733cat – A database of weather and circulation type classifications. Phys. Chem. Earth, Parts A/B/C 35, 360–373 (2010)

    Google Scholar 

  5. Hewitson, B.C., Crane, R.G.: Self-organizing maps: applications to synoptic climatology. Clim. Res. 22, 13–26 (2002)

    Article  Google Scholar 

  6. Liu, Y., Weisberg, R.H.: A Review of Self-Organizing Map Applications in Meteorology and Oceanography. In: Mwasiagi, J.I. (ed.) Self-Organizing Maps - Applications and Novel Algorithm, pp. 253–272. InTech Publishers (2011)

    Google Scholar 

  7. Sheridan, C.S., Lee, C.C.: The self-organizing map in synoptic climatological research. Prog. Phys. Geog. 35, 109–119 (2011)

    Article  Google Scholar 

  8. Kohonen, T.: Self-Organization and Associative Memory. Springer, New York (1984)

    MATH  Google Scholar 

  9. Sang, H., Gelfand, A.E., Lennard, C., Hegerl, G., Hewitson, B.: Interpreting self-organizing maps through space-time data models. Ann. Appl. Stats. 2, 1194–1216 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.-K., Peu-bey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 137, 553–597 (2011)

    Article  Google Scholar 

  11. Michaelides, S.C., Liassidou, F., Schizas, C.N.: Synoptic classification and establishment of analogues with artificial neural networks. Pure Appl. Geophys. 164, 1347–1364 (2007)

    Article  Google Scholar 

  12. Kassomenos, P.A.: Anatomy of the synoptic conditions occurring over southern Greece during the second half of the 20th century Part I. Winter and summer. Theor. Appl. Climatol. 75, 65–77 (2003)

    Google Scholar 

  13. Kassomenos, P.A.: Anatomy of the synoptic conditions occurring over southern Greece during the second half of the 20th century Part II. Autumn and spring. Theor. Appl. Climatol. 75, 79–92 (2003)

    Google Scholar 

  14. Kostopoulou, E., Jones, P.D.: Comprehensive analysis of the climate variability in the eastern Mediterranean. Part I: map-pattern classification. Int. J. Climatol. 27, 1189–1214 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Philippopoulos, K., Deligiorgi, D. (2012). A Self-Organizing Maps Multivariate Spatio-temporal Approach for the Classification of Atmospheric Conditions. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34478-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34478-7_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34477-0

  • Online ISBN: 978-3-642-34478-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics