Abstract
This work demonstrates the potential of Self-Organizing Maps (SOM) as a multivariate clustering approach of spatio-temporal datasets in atmospheric physics. A comprehensive framework is proposed and the method is applied and assessed for its performance in the field of synoptic climatology within a specific region at southeastern Mediterranean. The results indicate that the SOM can be a powerful tool for the identification and classification of atmospheric conditions, allowing an analytical description of the principal atmospheric states. The coupling of sea level pressure (SLP) and 500hPa geopotential (Φ500) in a synoptic-scale domain with the wind, the specific humidity and the air and dew point temperature in the chosen mesoscale subdomain, allows the SOM algorithm to define the relevant atmospheric circulation patterns. The corresponding patterns are well documented and the method accounts for their seasonality. Furthermore, in the resulting two-dimensional lattice the similar patterns are mapped closer to each other, compared to more dissimilar ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yarnal, B.: Synoptic Climatology in Environmental Analysis: A primer. Belhaven Press, London (1993)
Beck, C., Philipp, A.: Evaluation and comparison of circulation type classifications for the European domain. Phys. Chem. Earth, Parts A/B/C 35, 9–12, 374–387 (2010)
Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynova, M., Kysely, J., Tveito, O.E.: Classifications of Atmospheric Circulation Patterns. Ann. N.Y. Acad. Sci. 1146, 105–152 (2008)
Philipp, A., Bartholy, J., Beck, C., Erpicum, M., Esteban, P., Fettweis, X., Huth, R., James, P., Jourdain, S., Kreienkamp, F., Krennert, T., Lykoudis, S., Michaelides, S.C., Pianko-Kluczynska, K., Post, P., Rasilla Álvarez, D., Schiemann, R., Spekat, A., Tymvios, F.S.: Cost733cat – A database of weather and circulation type classifications. Phys. Chem. Earth, Parts A/B/C 35, 360–373 (2010)
Hewitson, B.C., Crane, R.G.: Self-organizing maps: applications to synoptic climatology. Clim. Res. 22, 13–26 (2002)
Liu, Y., Weisberg, R.H.: A Review of Self-Organizing Map Applications in Meteorology and Oceanography. In: Mwasiagi, J.I. (ed.) Self-Organizing Maps - Applications and Novel Algorithm, pp. 253–272. InTech Publishers (2011)
Sheridan, C.S., Lee, C.C.: The self-organizing map in synoptic climatological research. Prog. Phys. Geog. 35, 109–119 (2011)
Kohonen, T.: Self-Organization and Associative Memory. Springer, New York (1984)
Sang, H., Gelfand, A.E., Lennard, C., Hegerl, G., Hewitson, B.: Interpreting self-organizing maps through space-time data models. Ann. Appl. Stats. 2, 1194–1216 (2008)
Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.-K., Peu-bey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc. 137, 553–597 (2011)
Michaelides, S.C., Liassidou, F., Schizas, C.N.: Synoptic classification and establishment of analogues with artificial neural networks. Pure Appl. Geophys. 164, 1347–1364 (2007)
Kassomenos, P.A.: Anatomy of the synoptic conditions occurring over southern Greece during the second half of the 20th century Part I. Winter and summer. Theor. Appl. Climatol. 75, 65–77 (2003)
Kassomenos, P.A.: Anatomy of the synoptic conditions occurring over southern Greece during the second half of the 20th century Part II. Autumn and spring. Theor. Appl. Climatol. 75, 79–92 (2003)
Kostopoulou, E., Jones, P.D.: Comprehensive analysis of the climate variability in the eastern Mediterranean. Part I: map-pattern classification. Int. J. Climatol. 27, 1189–1214 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Philippopoulos, K., Deligiorgi, D. (2012). A Self-Organizing Maps Multivariate Spatio-temporal Approach for the Classification of Atmospheric Conditions. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34478-7_66
Download citation
DOI: https://doi.org/10.1007/978-3-642-34478-7_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34477-0
Online ISBN: 978-3-642-34478-7
eBook Packages: Computer ScienceComputer Science (R0)