Manifold Analysis of Spectral Munsell Colors | SpringerLink
Skip to main content

Manifold Analysis of Spectral Munsell Colors

  • Conference paper
Neural Information Processing (ICONIP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7663))

Included in the following conference series:

  • 3305 Accesses

Abstract

The spectra of color can represent a color in the most accurate way, but the dimension of the spectral data is too high to process. This paper aims to analyze the spectral reflectance curves of 1269 Munsell standard color samples with some influential algorithms in manifold learning. Experimental results reveal that the intrinsic dimension of the embedded manifold in the spectral Munsell color space is 3 and the 3-dimensional structure of this manifold looks like a cone, consistent with the development and structure of the Munsell color system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Parkkinen, J., Hallikainen, J., Jaaskelainen, T.: Characteristic spectra of munsell colors. J. Opt. Soc. Am. A 6, 318–322 (1989)

    Article  Google Scholar 

  2. Jaaskelainen, T., Parkkinen, J.P.S., Toyooka, S.: Vector-subspace model for color representation. J. Opt. Soc. Am. A 7, 725–730 (1990)

    Article  Google Scholar 

  3. Vrhel, M., Gershon, R., Iwan, L.: Measurement and analysis of object reflectance spectra. Color Research and Application 19, 4–9 (1994)

    Google Scholar 

  4. Lenz, R., Meer, P.: Non-euclidean structure of the spectral color space. In: EUROPTO: Conference on Polarization and Color Techniques in Industrial Inspection, Munich. SPIE Proceedings, vol. 3826, pp. 101–112 (1999)

    Google Scholar 

  5. Burns, S., Cohen, J., Kuznetsov, E.: The munsell color system in fundamental color space. Color Research and Application 15, 29–51 (1990)

    Article  Google Scholar 

  6. Romney, A., Indow, T.: Munsell reflectance spectra represented in three-dimensional euclidean space. Color Research and Application 28, 182–196 (2003)

    Article  Google Scholar 

  7. van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: A comparative review (2008)

    Google Scholar 

  8. Costa, J.A., Member, S., Hero, A.O.: Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Processing, 2210–2221 (2004)

    Google Scholar 

  9. Costa, J.A., Girotra, A., Hero Iii, A.O.: A.o.: Estimating local intrinsic dimension with knearest neighbor graphs. In: IEEE Workshop on Statistical Signal Processing, SSP, pp. 417–422 (2005)

    Google Scholar 

  10. Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: NIPS 2004 (2004)

    Google Scholar 

  11. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC, Boca Raton (2001)

    MATH  Google Scholar 

  12. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  13. Roweis, S., Saul, L.: Nonlinear dimension reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  14. Donoho, D.L., Grimes, C.: Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. National Academy of Sciences 100, 5591–5596 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26, 313–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weinberger, K.Q., Packer, B.D., Saul, L.K.: Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization. In: Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (2005)

    Google Scholar 

  17. Kuehni, R.G.: The early development of the munsell system. Color Research and Application 27, 20–27 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Lin, C., Niu, J., Zhang, L., Parkkinen, J. (2012). Manifold Analysis of Spectral Munsell Colors. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics