Abstract
The spectra of color can represent a color in the most accurate way, but the dimension of the spectral data is too high to process. This paper aims to analyze the spectral reflectance curves of 1269 Munsell standard color samples with some influential algorithms in manifold learning. Experimental results reveal that the intrinsic dimension of the embedded manifold in the spectral Munsell color space is 3 and the 3-dimensional structure of this manifold looks like a cone, consistent with the development and structure of the Munsell color system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parkkinen, J., Hallikainen, J., Jaaskelainen, T.: Characteristic spectra of munsell colors. J. Opt. Soc. Am. A 6, 318–322 (1989)
Jaaskelainen, T., Parkkinen, J.P.S., Toyooka, S.: Vector-subspace model for color representation. J. Opt. Soc. Am. A 7, 725–730 (1990)
Vrhel, M., Gershon, R., Iwan, L.: Measurement and analysis of object reflectance spectra. Color Research and Application 19, 4–9 (1994)
Lenz, R., Meer, P.: Non-euclidean structure of the spectral color space. In: EUROPTO: Conference on Polarization and Color Techniques in Industrial Inspection, Munich. SPIE Proceedings, vol. 3826, pp. 101–112 (1999)
Burns, S., Cohen, J., Kuznetsov, E.: The munsell color system in fundamental color space. Color Research and Application 15, 29–51 (1990)
Romney, A., Indow, T.: Munsell reflectance spectra represented in three-dimensional euclidean space. Color Research and Application 28, 182–196 (2003)
van der Maaten, L., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: A comparative review (2008)
Costa, J.A., Member, S., Hero, A.O.: Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. on Signal Processing, 2210–2221 (2004)
Costa, J.A., Girotra, A., Hero Iii, A.O.: A.o.: Estimating local intrinsic dimension with knearest neighbor graphs. In: IEEE Workshop on Statistical Signal Processing, SSP, pp. 417–422 (2005)
Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: NIPS 2004 (2004)
Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall/CRC, Boca Raton (2001)
Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)
Roweis, S., Saul, L.: Nonlinear dimension reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Donoho, D.L., Grimes, C.: Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data. National Academy of Sciences 100, 5591–5596 (2003)
Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26, 313–338 (2004)
Weinberger, K.Q., Packer, B.D., Saul, L.K.: Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization. In: Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics (2005)
Kuehni, R.G.: The early development of the munsell system. Color Research and Application 27, 20–27 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, H., Lin, C., Niu, J., Zhang, L., Parkkinen, J. (2012). Manifold Analysis of Spectral Munsell Colors. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_65
Download citation
DOI: https://doi.org/10.1007/978-3-642-34475-6_65
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34474-9
Online ISBN: 978-3-642-34475-6
eBook Packages: Computer ScienceComputer Science (R0)