Abstract
This work develops a convex optimization framework for image segmentation models, where both the unknown regions and parameters describing each region are part of the optimization process. Convex relaxations and optimization algorithms are proposed, which produce results that are independent from the initializations and closely approximate global minima. We focus especially on problems where the data fitting term depends on the mean or median image intensity within each region. We also develop a convex relaxation for the piecewise constant Mumford-Shah model, where additionally the number of regions is unknown. The approach is based on optimizing a convex energy potential over functions defined over a space of one higher dimension than the image domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bae, E., Tai, X.-C.: Efficient global minimization for the multiphase Chan-Vese model of image segmentation. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition 2009. Volume 5681 of Lecture Notes in Computer Science, pp. 28–41. Springer, Berlin/Heidelberg (2009)
Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92, 112–129 (2011)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)
Brown, E.S., Chan, T.F., Bresson, X.: A convex relaxation method for a class of vector-valued minimization problems with applications to mumford-shah segmentation. UCLA, Applied Mathematics, CAM-report-10-43, Department of Mathematics, UCLA, July 2010
Brown, E.S., Chan, T.F., Bresson, X.: Completely convex formulation of the chan-vese image segmentation model. Int. J. Comput. Vis. (2011). doi:10.1007/s11263-011-0499-y
Chan, T., Vese, L.A.: Active contours without edges. IEEE Image Proc. 10, 266–277 (2001)
Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (electronic) (2006)
Darbon, J.: A note on the discrete binary mumford-shah model. In: Proceedings of Computer Vision/Computer Graphics Collaboration Techniques, (MIRAGE 2007). LNCS Series, vol. 4418, pp. 283–294, March 2007
Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy minimization with label costs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2173–2180 (2010)
Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mórken, K., Lysaker, M., Lie, K.-A. (eds.) Scale Space and Variational Methods in Computer Vision (SSVM 2009). Volume 5567 of LNCS, pp. 150–162. Springer, Berlin/Heidelberg (2009)
Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and exact primal-dual iterations for variational problems in computer vision. In: European Conference on Computer Vision (ECCV). LNCS vol. 6312, pp. 494–505 (2010)
Lempitsky, V., Blake, A., Rother, C.: Image segmentation by branch-and-mincut. In: Proceedings of the 10th European Conference on Computer Vision: Part IV, pp. 15–29. Springer, Berlin, Heidelberg (2008)
Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)
Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida (2009)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth mumford-shah functional. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)
Potts, R.B.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109 (1952)
Strandmark, P., Kahl, F., Overgaard, N.C.: Optimizing parametric total variation models. In: IEEE 12th International Conference on Computer Vision, pp. 2240–2247, pp. 26–33 (2009)
Yuan, J., Boykov, Y.: Tv-based image segmentation with label cost prior. In: BMVC, Article no 101, pp. 101:1–101:12. BMVA Press, Sept 2010
Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: ECCV. Lecture Notes in Computer Science, vol. 6316, pp. 379–392 (2010)
Yuan, J., Shi, J., Tai, X.-C.: A convex and exact approach to discrete constrained tv-l1 image approximation. Technical report CAM-10–51, UCLA, CAM, UCLA (2010)
Yuan, J., Bae, E., Boykov, Y., Tai, X.C.: A continuous max-flow approach to minimal partitions with label cost prior. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 279–290 (2012)
Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Deussen, O., Keim, D.A., Saupe, D. (eds.) Proceedings of the Vision, Modeling and Visualization Conference (VMV), pp. 243–252 (2008)
Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multi-band image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 884–900 (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bae, E., Yuan, J., Tai, XC. (2013). Simultaneous Convex Optimization of Regions and Region Parameters in Image Segmentation Models. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-34141-0_19
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34140-3
Online ISBN: 978-3-642-34141-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)