Simultaneous Convex Optimization of Regions and Region Parameters in Image Segmentation Models | SpringerLink
Skip to main content

Simultaneous Convex Optimization of Regions and Region Parameters in Image Segmentation Models

  • Chapter
  • First Online:
Innovations for Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

This work develops a convex optimization framework for image segmentation models, where both the unknown regions and parameters describing each region are part of the optimization process. Convex relaxations and optimization algorithms are proposed, which produce results that are independent from the initializations and closely approximate global minima. We focus especially on problems where the data fitting term depends on the mean or median image intensity within each region. We also develop a convex relaxation for the piecewise constant Mumford-Shah model, where additionally the number of regions is unknown. The approach is based on optimizing a convex energy potential over functions defined over a space of one higher dimension than the image domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, E., Tai, X.-C.: Efficient global minimization for the multiphase Chan-Vese model of image segmentation. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) Energy Minimization Methods in Computer Vision and Pattern Recognition 2009. Volume 5681 of Lecture Notes in Computer Science, pp. 28–41. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  2. Bae, E., Yuan, J., Tai, X.-C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92, 112–129 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

    Article  Google Scholar 

  4. Brown, E.S., Chan, T.F., Bresson, X.: A convex relaxation method for a class of vector-valued minimization problems with applications to mumford-shah segmentation. UCLA, Applied Mathematics, CAM-report-10-43, Department of Mathematics, UCLA, July 2010

    Google Scholar 

  5. Brown, E.S., Chan, T.F., Bresson, X.: Completely convex formulation of the chan-vese image segmentation model. Int. J. Comput. Vis. (2011). doi:10.1007/s11263-011-0499-y

    Google Scholar 

  6. Chan, T., Vese, L.A.: Active contours without edges. IEEE Image Proc. 10, 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Chan, T.F., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (electronic) (2006)

    Google Scholar 

  8. Darbon, J.: A note on the discrete binary mumford-shah model. In: Proceedings of Computer Vision/Computer Graphics Collaboration Techniques, (MIRAGE 2007). LNCS Series, vol. 4418, pp. 283–294, March 2007

    Google Scholar 

  9. Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy minimization with label costs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2173–2180 (2010)

    Google Scholar 

  10. Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. In: Tai, X.-C., Mórken, K., Lysaker, M., Lie, K.-A. (eds.) Scale Space and Variational Methods in Computer Vision (SSVM 2009). Volume 5567 of LNCS, pp. 150–162. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  11. Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and exact primal-dual iterations for variational problems in computer vision. In: European Conference on Computer Vision (ECCV). LNCS vol. 6312, pp. 494–505 (2010)

    Google Scholar 

  12. Lempitsky, V., Blake, A., Rother, C.: Image segmentation by branch-and-mincut. In: Proceedings of the 10th European Conference on Computer Vision: Part IV, pp. 15–29. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  13. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approach for computing minimal partitions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida (2009)

    Google Scholar 

  15. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the piecewise smooth mumford-shah functional. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)

    Google Scholar 

  16. Potts, R.B.: Some generalized order-disorder transformations. In: Proceedings of the Cambridge Philosophical Society, vol. 48, pp. 106–109 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. Strandmark, P., Kahl, F., Overgaard, N.C.: Optimizing parametric total variation models. In: IEEE 12th International Conference on Computer Vision, pp. 2240–2247, pp. 26–33 (2009)

    Google Scholar 

  18. Yuan, J., Boykov, Y.: Tv-based image segmentation with label cost prior. In: BMVC, Article no 101, pp. 101:1–101:12. BMVA Press, Sept 2010

    Google Scholar 

  19. Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: ECCV. Lecture Notes in Computer Science, vol. 6316, pp. 379–392 (2010)

    Article  Google Scholar 

  20. Yuan, J., Shi, J., Tai, X.-C.: A convex and exact approach to discrete constrained tv-l1 image approximation. Technical report CAM-10–51, UCLA, CAM, UCLA (2010)

    Google Scholar 

  21. Yuan, J., Bae, E., Boykov, Y., Tai, X.C.: A continuous max-flow approach to minimal partitions with label cost prior. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 279–290 (2012)

    Article  Google Scholar 

  22. Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Deussen, O., Keim, D.A., Saupe, D. (eds.) Proceedings of the Vision, Modeling and Visualization Conference (VMV), pp. 243–252 (2008)

    Google Scholar 

  23. Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes/mdl for multi-band image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 884–900 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egil Bae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bae, E., Yuan, J., Tai, XC. (2013). Simultaneous Convex Optimization of Regions and Region Parameters in Image Segmentation Models. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_19

Download citation

Publish with us

Policies and ethics