Modules of Lie Algebra G(A) | SpringerLink
Skip to main content

Modules of Lie Algebra G(A)

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7473))

Included in the following conference series:

  • 5499 Accesses

Abstract

Studied the structure and representations of Lie algebra G(A), given a non-degenerate symmetric invariant bilinear form on G(A), got the classification of the highest (lowest) weight modules on G(A), and determined the maximal proper submodules when the highest (lowest) weight modules are reducible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kac, V.G.: Infinite dimensional Lie algebras, 3rd edn. Cambridge University Press, New York (2006)

    Google Scholar 

  2. Moody, R.V., Pianzola, A.: Lie algebras with triangular decompositions. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication, John Wiley Sons, Inc., New York (1995)

    MATH  Google Scholar 

  3. Wan, Z.: Introduction to Kac-Moody algebra. World Scientific (1991)

    Google Scholar 

  4. Su, Y.C., Lu, C.H.: Introduction to the finite dimensional semisimple Lie algebra. Science Press, Beijing (2009)

    Google Scholar 

  5. Liu, J.B., Wang, X.M.: Linear algebra. Shanghai Jiaotong University Press, Shanghai (2012)

    Google Scholar 

  6. Benkart, G., Kang, S.J., Misra, K.C.: Indefinite Kac-Moody algebras of classical type. Adv. Math. 105, 76–110 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benkart, G., Kang, S.J., Misra, K.C.: Weight multiplicity polynomials for affine Kac-Moody algebras of type \(A\sp{(1)}\sb r\). Compositio Math. 104, 153–187 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, H., Lu, C.: The isomorphic realization of non-degenerate solvable Lie algebras of maximal rank. Algebra Colloq. 15, 347–360 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Zhang, H.: A class of non-degenerate solvable Lie algebras and their derivations. Acta Math. Sin. (Engl. Ser.) 24, 7–16 (2008)

    Article  MathSciNet  Google Scholar 

  10. Liu, J., Zhao, K.: Deformed Kac-Moody algebras and their representations. J. Algebra 319, 4692–4711 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yanyan, Z., Jianbo, L., Wen, T., Qin, Z. (2012). Modules of Lie Algebra G(A). In: Liu, B., Ma, M., Chang, J. (eds) Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science, vol 7473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34062-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34062-8_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34061-1

  • Online ISBN: 978-3-642-34062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics