Dynamics and Simulations of Multi-species Competition-Predator System with Impulsive | SpringerLink
Skip to main content

Dynamics and Simulations of Multi-species Competition-Predator System with Impulsive

  • Conference paper
Information Computing and Applications (ICICA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7473))

Included in the following conference series:

  • 5260 Accesses

Abstract

We investigate the dynamics of a class of multi-species competition predator interaction models with Beddington-DeAngelis functional response. Sufficient conditions for existence of a positive periodic solution are given and sufficient criteria are established for the global stability and the globally exponential stability of the system by using the comparison principle and the Lyapunov method. In addition, some numerical simulation shows that our models can occur in many forms of complexities including periodic oscillation and strange chaotic strange attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Animal Ecol. 44, 331–340 (1975)

    Article  Google Scholar 

  2. Kuang, Y., Baretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theoret. Pop. Biol. 56, 65–75 (1999)

    Article  MATH  Google Scholar 

  4. Abrams, P.A., Ginzburg, L.R.: The nature of predation: Prey-predator. Ratio-dependent or neither. Trends Ecol. Evol. 15, 337–341 (2000)

    Article  Google Scholar 

  5. Fan, M., Kuang, Y.: Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response. J. Math. Anal. Appl. 295, 15–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rui, X.: Global etability and Hopf bifurcation of a predator-prey model with stage structure and delayed predator response. J. Math. 67, 1683–1693 (2012)

    MATH  Google Scholar 

  7. Xiaohu, W., Shuyong, L., Xu, D.: Globally exponential stability of periodic solutions for impulsive neutral-type neura networks with delays. J. Math. 64, 65–75 (2011)

    Google Scholar 

  8. Lantang, M., Gliu, X.: Positive periodic soution for ratio-dependent n-specices discrete time system. J. Math. 56, 577–589 (2011)

    Google Scholar 

  9. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    MATH  Google Scholar 

  10. Gaines, R.E., Mawhin, J.L.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    MATH  Google Scholar 

  11. Zhang, J., Gui, Z.J.: Existence and stability of periodic solutions of high-order Hopfield neural networks with impulses and delays. Journal of Computational and Applied Mathematics 224, 602–613 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yan, Y., Wang, K.H., Gui, Z.J.: Periodic Solution of Impulsive Predator-Prey Models with the Beddington-DeAngelis Functional Response. In: 5th International Congress on Mathematical Biology, pp. 86–91. World Academic Press (2011)

    Google Scholar 

  13. Anokhin, A., Berezansky, L., Braverman, E.: Exponential stability of linear delay impulsive differential equations. J. Math. Anal. Appl. 193, 923–941 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific Series on Nonlinear Sciences. Ser. A, Singapore (1995)

    Google Scholar 

  15. Lin, Z., Liu, J., Pedersen, M.: Periodicity and blowup in a two-species cooperating model. Nonlinar Analysis. Real World Applications 12, 479–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, Y., Wang, K., Gui, Z. (2012). Dynamics and Simulations of Multi-species Competition-Predator System with Impulsive. In: Liu, B., Ma, M., Chang, J. (eds) Information Computing and Applications. ICICA 2012. Lecture Notes in Computer Science, vol 7473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34062-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34062-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34061-1

  • Online ISBN: 978-3-642-34062-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics