Abstract
Detecting social events such as imitation is identified as key step for the development of socially aware robots. In this paper, we present an unsupervised approach to measure immediate synchronous and asynchronous imitations between two partners. The proposed model is based on two steps: detection of interest points in images and evaluation of similarity between actions. Firstly, spatio-temporal points are detected for an accurate selection of the important information contained in videos. Then bag-of-words models are constructed, describing the visual content of videos. Finally similarity between bag-of-words models is measured with dynamic-time-warping, giving an accurate measure of imitation between partners. Experimental results obtained show that the model is able to discriminate between imitation and non-imitation phases of interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Delaherche, E., Chetouani, M., Mahdhaoui, M., Saint-Georges, C., Viaux, S., Cohen, D.: Interpersonal synchrony: A survey of evaluation methods across disciplines. IEEE Transactions on Affective Computing (to appear, 2012)
Morency, L.-P.: Modeling human communication dynamics (social sciences). IEEE Signal Processing Magazine 27(5), 112–116 (2010)
Morency, L.-P., de Kok, I., Gratch, J.: Predicting Listener Backchannels: A Probabilistic Multimodal Approach. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 176–190. Springer, Heidelberg (2008), http://dx.doi.org/10.1007/978-3-540-85483-8_18
Al Moubayed, S., Baklouti, M., Chetouani, M., Dutoit, T., Mahdhaoui, A., Martin, J.-C., Ondas, S., Pelachaud, C., Urbain, J., Yilmaz, M.: Generating robot/agent backchannels during a storytelling experiment. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 3749–3754 (2009)
Sidner, C.L., Lee, C., Kidd, C.D., Lesh, N., Rich, C.: Explorations in engagement for humans and robots. Artif. Intell. 166, 140–164 (2005)
Rolf, M., Hanheide, M., Rohlfing, K.: Attention via synchrony: Making use of multimodal cues in social learning. IEEE Trans. Auton. Mental Develop. 1(1), 55–67 (2009)
Calinon, S., D’halluin, F., Sauser, E., Caldwell, D., Billard, A.: Learning and reproduction of gestures by imitation: An approach based on Hidden Markov Model and Gaussian Mixture Regression. IEEE Robotics and Automation Magazine 17(2), 44–54 (2010)
Bernieri, F.J., Reznick, J.S., Rosenthal, R.: Synchrony, pseudo synchrony, and dissynchrony: Measuring the entrainment process in mother-infant interactions. Journal of Personality and Social Psychology 54(2), 243–253 (1988)
Ashenfelter, K.T., Boker, S.M., Waddell, J.R., Vitanov, N.: Spatiotemporal symmetry and multifractal structure of head movements during dyadic conversation. J. Exp. Psychol. Hum. Percept. Perform. 35(4), 1072–1091 (2009)
Campbell, N.: Multimodal processing of discourse information; the effect of synchrony. In: 2008 Second International Symposium on Universal Communication, pp. 12–15 (2008)
Varni, G., Volpe, G., Camurri, A.: A system for real-time multimodal analysis of nonverbal affective social interaction in user-centric media. IEEE Transactions on Multimedia 12(6), 576–590 (2010)
Altmann, U.: Studying movement synchrony using time series and regression models, 23 (2011)
Ramseyer, F., Tschacher, W.: Nonverbal synchrony in psychotherapy: Coordinated body movement reflects relationship quality and outcome. Journal of Consulting and Clinical Psychology 79(3), 284–295 (2011)
Delaherche, E., Chetouani, M.: Multimodal coordination: exploring relevant features and measures. In: Second International Workshop on Social Signal Processing, ACM Multimedia 2010 (2010)
Sun, X., Truong, K.P., Pantic, M., Nijholt, A.: Towards visual and vocal mimicry recognition in human-human interactions. In: Tunstel, E., Nahavandi, S., Stoica, A. (eds.) IEEE International Conference on Systems, Man, and Cybernetics, SMC 2011: Special Session on Social Signal Processing, pp. 367–373. IEEE Computer Society Press, USA (2011)
Boker, S.M., Xu, M., Rotondo, J.L., King, K.: Windowed cross-correlation and peak picking for the analysis of variability in the association between behavioral time series. Psychological Methods 7(3), 338–355 (2002)
Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)
Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of human activities: A survey. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1473–1488 (2008)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)
Mokhber, A., Achard, C., Milgram, M.: Recognition of human behavior by space-time silhouette characterization. Pattern Recognition Letters 29(1), 81–89 (2008)
Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: Proceedings of the Ninth IEEE International Conference on Computer Vision 2003, pp. 726–733 (October 2003)
Laptev, I., Lindeberg, T.: Local descriptors for spatio-temporal recognition. In: First International Workshop on Spatial Coherence for Visual Motion Analysis (2004)
Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance 2005, pp. 65–72. IEEE (October 2005)
Niebles, J.C., Wang, H., Fei-fei, L.: Unsupervised learning of human action categories using spatial-temporal words. In: British Machine Vision Conference (BMVC), vol. 3, p. 1249–1258 (2006)
Rao, C., Yilmaz, A., Shah, M.: View-Invariant Representation and Recognition of Actions (2002)
Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-123–II-130. IEEE (2001)
Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV, pp. 432–439 (2003)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707 (1966)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)
Müller, M.: Information Retrieval for Music and Motion. Springer-Verlag New York, Inc., Secaucus (2007)
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)
Delaherche, E., Boucenna, S., Karp, K., Michelet, S., Achard, C., Chetouani, M.: Social coordination assessment: Distinguishing between form and timing. In: Multimodal pattern recognition of social signals in human computer interaction, (submitted, 2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Michelet, S., Karp, K., Delaherche, E., Achard, C., Chetouani, M. (2012). Automatic Imitation Assessment in Interaction. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34014-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-34014-7_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34013-0
Online ISBN: 978-3-642-34014-7
eBook Packages: Computer ScienceComputer Science (R0)