Abstract
In many applications, such as virtual agents or humanoid robots, it is difficult to represent complex human behaviors and the full range of skills necessary to achieve them. Real life human behaviors are often the combination of several parts and never reproduced in the exact same way. In this work we introduce a new algorithm that is able to learn behaviors by assuming that the observed complex motions can be represented in a smaller dictionary of concurrent tasks. We present an optimization formalism and show how we can learn simultaneously the dictionary and the mixture coefficients that represent each demonstration. We present results on a idealized model where a set of potential functions represents human objectives or preferences for achieving a task.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Konczak, J.: On the notion of motor primitives in humans and robots. In: Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, vol. 123, pp. 47–53. Lund University Cognitive Studies (2005)
Kulic, D., Nakamura, Y.: Incremental Learning of Human Behaviors using Hierarchical Hidden Markov Models. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4649–4655. IEEE Computer Society Press (2010)
Kruger, V., Herzog, D., Baby, S., Ude, A., Kragic, D.: Learning actions from observations. Robotics and Automation Magazine 17(2), 30–43 (2010)
Calinon, S., D’Halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: An approach based on Hidden Markov Model and Gaussian Mixture Regression. IEEE Robotics and Automation Magazine 17(2), 44–54 (2010)
Butterfield, J., Osentoski, S., Jay, G., Jenkins, O.C.: Learning from Demonstration using a Multi-valued Function Regressor for Time-series Data. In: International Conference on Humanoid Robots, vol. (10). IEEE Computer Society Press, Nashville (2010)
Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization.. Nature 401(6755), 788–791 (1999)
Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for sparse hierarchical dictionary learning. In: Proceedings of the International Conference on Machine Learning, ICML (2010)
Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 45–55 (2010)
Li, Y., Fermuller, C., Aloimonos, Y., Ji, H.: Learning shift-invariant sparse representation of actions. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2630–2637. IEEE, San-Francisco (2010)
Hellbach, S., Eggert, J.P., Körner, E., Gross, H.-M.: Basis Decomposition of Motion Trajectories Using Spatio-temporal NMF. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 804–814. Springer, Heidelberg (2009)
Mangin, O., Oudeyer, P.-Y.: Learning to recognize parallel combinations of human motion primitives with linguistic descriptions using non-negative matrix factorization. To Appear in International Conference on Intelligent Robots and Systems (IROS 2012), Vilamoura, Algarve (Portugal), IEEE/RSJ (2012)
Schaal, S., Ijspeert, A.J., Billard, A.G.: Computational approaches to motor learning by imitation. Phil. Transactions of the Royal Society of London B: Biological Sciences 358, 537–547 (2003)
Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: International conference on Machine learning, ICML 2006, vol. (23), pp. 729–736. ACM Press, New York (2006)
Lopes, M., Melo, F., Montesano, L.: Active Learning for Reward Estimation in Inverse Reinforcement Learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 31–46. Springer, Heidelberg (2009)
Abbeel, P., Coates, A., Ng, A.Y.: Autonomous Helicopter Aerobatics through Apprenticeship Learning. The International Journal of Robotics Research 29(13), 1608–1639 (2010)
Jetchev, N., Toussaint, M.: Task Space Retrieval Using Inverse Feedback Control. In: Getoor, L., Scheffer, T. (eds.) International Conference on Machine Learning, ICML 2011, pp. 449–456. ACM Press, New York (2011)
Brillinger, D.R.: Learning a Potential Function From a Trajectory. IEEE Signal Processing Letters 14(11), 867–870 (2007)
Lefèvre, A., Bach, F.R., Févotte, C.: Online algorithms for Nonnegative Matrix Factorization with the Itakura-Saito divergence. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 1–9. IEEE Computer Society Press (2011)
Massera, G., Tuci, E., Ferrauto, T., Nolfi, S.: The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills. IEEE Computational Intelligence Magazine 5(3), 33–42 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mangin, O., Oudeyer, PY. (2012). Learning the Combinatorial Structure of Demonstrated Behaviors with Inverse Feedback Control. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34014-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-34014-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34013-0
Online ISBN: 978-3-642-34014-7
eBook Packages: Computer ScienceComputer Science (R0)