Learning the Combinatorial Structure of Demonstrated Behaviors with Inverse Feedback Control | SpringerLink
Skip to main content

Learning the Combinatorial Structure of Demonstrated Behaviors with Inverse Feedback Control

  • Conference paper
Human Behavior Understanding (HBU 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7559))

Included in the following conference series:

Abstract

In many applications, such as virtual agents or humanoid robots, it is difficult to represent complex human behaviors and the full range of skills necessary to achieve them. Real life human behaviors are often the combination of several parts and never reproduced in the exact same way. In this work we introduce a new algorithm that is able to learn behaviors by assuming that the observed complex motions can be represented in a smaller dictionary of concurrent tasks. We present an optimization formalism and show how we can learn simultaneously the dictionary and the mixture coefficients that represent each demonstration. We present results on a idealized model where a set of potential functions represents human objectives or preferences for achieving a task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5262
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 6578
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Konczak, J.: On the notion of motor primitives in humans and robots. In: Fifth International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, vol. 123, pp. 47–53. Lund University Cognitive Studies (2005)

    Google Scholar 

  2. Kulic, D., Nakamura, Y.: Incremental Learning of Human Behaviors using Hierarchical Hidden Markov Models. In: IEEE International Conference on Intelligent Robots and Systems, pp. 4649–4655. IEEE Computer Society Press (2010)

    Google Scholar 

  3. Kruger, V., Herzog, D., Baby, S., Ude, A., Kragic, D.: Learning actions from observations. Robotics and Automation Magazine 17(2), 30–43 (2010)

    Article  Google Scholar 

  4. Calinon, S., D’Halluin, F., Sauser, E.L., Caldwell, D.G., Billard, A.G.: An approach based on Hidden Markov Model and Gaussian Mixture Regression. IEEE Robotics and Automation Magazine 17(2), 44–54 (2010)

    Article  Google Scholar 

  5. Butterfield, J., Osentoski, S., Jay, G., Jenkins, O.C.: Learning from Demonstration using a Multi-valued Function Regressor for Time-series Data. In: International Conference on Humanoid Robots, vol. (10). IEEE Computer Society Press, Nashville (2010)

    Google Scholar 

  6. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  7. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization.. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  8. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for sparse hierarchical dictionary learning. In: Proceedings of the International Conference on Machine Learning, ICML (2010)

    Google Scholar 

  9. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 45–55 (2010)

    Article  Google Scholar 

  10. Li, Y., Fermuller, C., Aloimonos, Y., Ji, H.: Learning shift-invariant sparse representation of actions. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2630–2637. IEEE, San-Francisco (2010)

    Chapter  Google Scholar 

  11. Hellbach, S., Eggert, J.P., Körner, E., Gross, H.-M.: Basis Decomposition of Motion Trajectories Using Spatio-temporal NMF. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009, Part II. LNCS, vol. 5769, pp. 804–814. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Mangin, O., Oudeyer, P.-Y.: Learning to recognize parallel combinations of human motion primitives with linguistic descriptions using non-negative matrix factorization. To Appear in International Conference on Intelligent Robots and Systems (IROS 2012), Vilamoura, Algarve (Portugal), IEEE/RSJ (2012)

    Google Scholar 

  13. Schaal, S., Ijspeert, A.J., Billard, A.G.: Computational approaches to motor learning by imitation. Phil. Transactions of the Royal Society of London B: Biological Sciences 358, 537–547 (2003)

    Article  Google Scholar 

  14. Ratliff, N.D., Bagnell, J.A., Zinkevich, M.A.: Maximum margin planning. In: International conference on Machine learning, ICML 2006, vol. (23), pp. 729–736. ACM Press, New York (2006)

    Google Scholar 

  15. Lopes, M., Melo, F., Montesano, L.: Active Learning for Reward Estimation in Inverse Reinforcement Learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 31–46. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Abbeel, P., Coates, A., Ng, A.Y.: Autonomous Helicopter Aerobatics through Apprenticeship Learning. The International Journal of Robotics Research 29(13), 1608–1639 (2010)

    Article  Google Scholar 

  17. Jetchev, N., Toussaint, M.: Task Space Retrieval Using Inverse Feedback Control. In: Getoor, L., Scheffer, T. (eds.) International Conference on Machine Learning, ICML 2011, pp. 449–456. ACM Press, New York (2011)

    Google Scholar 

  18. Brillinger, D.R.: Learning a Potential Function From a Trajectory. IEEE Signal Processing Letters 14(11), 867–870 (2007)

    Article  Google Scholar 

  19. Lefèvre, A., Bach, F.R., Févotte, C.: Online algorithms for Nonnegative Matrix Factorization with the Itakura-Saito divergence. In: IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), pp. 1–9. IEEE Computer Society Press (2011)

    Google Scholar 

  20. Massera, G., Tuci, E., Ferrauto, T., Nolfi, S.: The Facilitatory Role of Linguistic Instructions on Developing Manipulation Skills. IEEE Computational Intelligence Magazine 5(3), 33–42 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mangin, O., Oudeyer, PY. (2012). Learning the Combinatorial Structure of Demonstrated Behaviors with Inverse Feedback Control. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34014-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34014-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34013-0

  • Online ISBN: 978-3-642-34014-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics