Constraint Programming for Path Planning with Uncertainty | SpringerLink
Skip to main content

Constraint Programming for Path Planning with Uncertainty

Solving the Optimal Search Path Problem

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Abstract

The optimal search path (OSP) problem is a single-sided detection search problem where the location and the detectability of a moving object are uncertain. A solution to this \(\mathcal{NP}\)-hard problem is a path on a graph that maximizes the probability of finding an object that moves according to a known motion model. We developed constraint programming models to solve this probabilistic path planning problem for a single indivisible searcher. These models include a simple but powerful branching heuristic as well as strong filtering constraints. We present our experimentation and compare our results with existing results in the literature. The OSP problem is particularly interesting in that it generalizes to various probabilistic search problems such as intruder detection, malicious code identification, search and rescue, and surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Trummel, K., Weisinger, J.: The complexity of the optimal searcher path problem. Operations Research 34(2), 324–327 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Stone, L.: Theory of Optimal Search. Academic Press, New York (2004)

    Google Scholar 

  3. Kranakis, E., Krizanc, D., Rajsbaum, S.: Computing with mobile agents in distributed networks. In: Rajasedaran, S., Reif, J. (eds.) Handbook of Parallel Computing: Models, Algorithms, and Applications, pp. 1–26. CRC Press (2007)

    Google Scholar 

  4. Chandramouli, R.: Web search steganalysis: Some challenges and approaches. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 576–579 (2004)

    Google Scholar 

  5. Verkama, M.: Optimal paging - a search theory approach. In: Proceedings of the International Conference on Universal Personal Communications, pp. 956–960 (1996)

    Google Scholar 

  6. Stewart, T.: Search for a moving target when the searcher motion is restricted. Computers and Operations Research 6, 129–140 (1979)

    Article  Google Scholar 

  7. Eagle, J.: The optimal search for a moving target when the search path is constrained. Operations Research 32(5), 1107–1115 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eagle, J., Yee, J.: An optimal branch-and-bound procedure for the constrained path, moving target search problem. Naval Research Logistics 38(1), 110–114 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Washburn, A.: Branch and bound methods for a search problem. Naval Research Logistics 45, 243–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lau, H., Huang, S., Dissanayake, G.: Discounted mean bound for the optimal searcher path problem with non-uniform travel times. European Journal of Operational Research 190(2), 383–397 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martins, G.: A new branch-and-bound procedure for computing optimal search paths. Tech. rep., Naval Postgraduate School (1993)

    Google Scholar 

  12. Abi-Zeid, I., Nilo, O., Lamontagne, L.: Resource allocation algorithms for planning search and rescue operations. INFOR 49(1), 15–30 (2011)

    MathSciNet  Google Scholar 

  13. Brown, K.M., Miguel, I.: Uncertainty and change. In: Rossi, F., Beek, P.V., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 44–58. Springer (2006)

    Google Scholar 

  14. Tarim, S., Manandhar, S., Walsh, T.: Stochastic constraint programming: A scenario-based approach. Constraints 11(1), 53–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brown, S.: Optimal search for a moving target in discrete time and space. Operations Research 28(6), 1275–1289 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environments: A survey. Constraints 10, 253–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Mathematics 43(2-3), 235–239 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laburthe, F., Jussien, N.: Choco Solver Documentation (2012), http://www.emn.fr/z-info/choco-solver/

  19. O’Madadhain, J., Fisher, D., Nelson, T., White, S., Boey, Y.: Jung: Java universal network/graph framework (2010), http://jung.sourceforge.net

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morin, M., Papillon, AP., Abi-Zeid, I., Laviolette, F., Quimper, CG. (2012). Constraint Programming for Path Planning with Uncertainty. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics