Computational Protein Design as a Cost Function Network Optimization Problem | SpringerLink
Skip to main content

Computational Protein Design as a Cost Function Network Optimization Problem

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Abstract

Proteins are chains of simple molecules called amino acids. The three-dimensional shape of a protein and its amino acid composition define its biological function. Over millions of years, living organisms have evolved and produced a large catalog of proteins. By exploring the space of possible amino-acid sequences, protein engineering aims at similarly designing tailored proteins with specific desirable properties. In Computational Protein Design (CPD), the challenge of identifying a protein that performs a given task is defined as the combinatorial optimization problem of a complex energy function over amino acid sequences.

In this paper, we introduce the CPD problem and some of the main approaches that have been used to solve it. We then show how this problem directly reduces to Cost Function Network (CFN) and 0/1LP optimization problems. We construct different real CPD instances to evaluate CFN and 0/1LP algorithms as implemented in the toulbar2 and cplex solvers. We observe that CFN algorithms bring important speedups compared to the CPD platform osprey but also to cplex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anfinsen, C.: Principles that govern the folding of protein chains. Science 181(4096), 223–253 (1973)

    Article  Google Scholar 

  2. Bistarelli, S., Faltings, B., Neagu, N.: Interchangeability in Soft CSPs. In: O’Sullivan, B. (ed.) Constraint Solving and CLP. LNCS (LNAI), vol. 2627, pp. 31–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Boas, F., Harbury, P.: Potential energy functions for protein design. Current Opinion in Structural Biology 17(2), 199–204 (2007)

    Article  Google Scholar 

  4. Case, D., Darden, T., Cheatham III, T., Simmerling, C., Wang, J., Duke, R., Luo, R., Merz, K., Pearlman, D., Crowley, M., Walker, R.C., Zhang, W., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Wong, K.F., Paesani, F., Wu, X., Brozell, S., Tsui, V., Gohlke, H., Yang, L., Tan, C., Mongan, J., Hornak, V., Cui, G., Beroza, P., Mathews, D.H., Schafmeister, C., Ross, W.S., Kollman, P.A.: Amber 9. University of California, San Francisco (2006)

    Google Scholar 

  5. Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artificial Intelligence 174, 449–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cooper, M.C., de Givry, S., Schiex, T.: Optimal soft arc consistency. In: Proc. of IJCAI 2007, Hyderabad, India, pp. 68–73 (January 2007)

    Google Scholar 

  7. Cooper, M.C.: Fundamental properties of neighbourhood substitution in constraint satisfaction problems. Artificial Intelligence 90(1-2), 1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahiyat, B., Mayo, S.: Protein design automation. Protein Science 5(5), 895–903 (1996)

    Article  Google Scholar 

  9. Desmet, J., Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356(6369), 539–542 (1992)

    Article  Google Scholar 

  10. Desmet, J., Spriet, J., Lasters, I.: Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization. Proteins: Structure, Function, and Bioinformatics 48(1), 31–43 (2002)

    Article  Google Scholar 

  11. Fersht, A.: Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. WH Freemean and Co., New York (1999)

    Google Scholar 

  12. Georgiev, I., Lilien, R., Donald, B.: Improved pruning algorithms and divide-and-conquer strategies for dead-end elimination, with application to protein design. Bioinformatics 22(14), e174–e183 (2006)

    Google Scholar 

  13. Georgiev, I., Lilien, R., Donald, B.: The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. Journal of Computational Chemistry 29(10), 1527–1542 (2008)

    Article  Google Scholar 

  14. Goldstein, R.: Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophysical Journal 66(5), 1335–1340 (1994)

    Article  Google Scholar 

  15. Grunwald, I., Rischka, K., Kast, S., Scheibel, T., Bargel, H.: Mimicking biopolymers on a molecular scale: nano (bio) technology based on engineered proteins. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367(1894), 1727–1747 (2009)

    Article  Google Scholar 

  16. Harvey, W.D., Ginsberg, M.L.: Limited discrepency search. In: Proc. of the 14th IJCAI, Montréal, Canada (1995)

    Google Scholar 

  17. Hawkins, G., Cramer, C., Truhlar, D.: Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. The Journal of Physical Chemistry 100(51), 19824–19839 (1996)

    Article  Google Scholar 

  18. Khare, S., Kipnis, Y., Takeuchi, R., Ashani, Y., Goldsmith, M., Song, Y., Gallaher, J., Silman, I., Leader, H., Sussman, J., et al.: Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nature Chemical Biology 8(3), 294–300 (2012)

    Article  Google Scholar 

  19. Kingsford, C., Chazelle, B., Singh, M.: Solving and analyzing side-chain positioning problems using linear and integer programming. Bioinformatics 21(7), 1028–1039 (2005)

    Article  Google Scholar 

  20. Koster, A., van Hoesel, S., Kolen, A.: Solving frequency assignment problems via tree-decomposition. Tech. Rep. RM/99/011, Universiteit Maastricht, Maastricht, The Netherlands (1999)

    Google Scholar 

  21. Kuhlman, B., Baker, D.: Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences 97(19), 10383 (2000)

    Article  Google Scholar 

  22. Larrosa, J., de Givry, S., Heras, F., Zytnicki, M.: Existential arc consistency: getting closer to full arc consistency in weighted CSPs. In: Proc. of the 19th IJCAI, Edinburgh, Scotland, pp. 84–89 (August 2005)

    Google Scholar 

  23. Larrosa, J., Meseguer, P., Schiex, T., Verfaillie, G.: Reversible DAC and other improvements for solving max-CSP. In: Proc. of AAAI 1998, Madison, WI (July 1998)

    Google Scholar 

  24. Leach, A., Lemon, A., et al.: Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins Structure Function and Genetics 33(2), 227–239 (1998)

    Article  Google Scholar 

  25. Looger, L., Hellinga, H.: Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications for protein design and structural genomics1. Journal of Molecular Biology 307(1), 429–445 (2001)

    Article  Google Scholar 

  26. Lovell, S., Word, J., Richardson, J., Richardson, D.: The penultimate rotamer library. Proteins: Structure, Function, and Bioinformatics 40(3), 389–408 (2000)

    Article  Google Scholar 

  27. Nestl, B., Nebel, B., Hauer, B.: Recent progress in industrial biocatalysis. Current Opinion in Chemical Biology 15(2), 187–193 (2011)

    Article  Google Scholar 

  28. Pabo, C.: Molecular technology: designing proteins and peptides. Nature 301, 200 (1983)

    Article  Google Scholar 

  29. Peisajovich, S., Tawfik, D.: Protein engineers turned evolutionists. Nature Methods 4(12), 991–994 (2007)

    Article  Google Scholar 

  30. Pierce, N., Spriet, J., Desmet, J., Mayo, S.: Conformational splitting: A more powerful criterion for dead-end elimination. Journal of Computational Chemistry 21(11), 999–1009 (2000)

    Article  Google Scholar 

  31. Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Engineering 15(10), 779–782 (2002)

    Article  Google Scholar 

  32. Pleiss, J.: Protein design in metabolic engineering and synthetic biology. Current Opinion in Biotechnology 22(5), 611–617 (2011)

    Article  Google Scholar 

  33. Raha, K., Wollacott, A., Italia, M., Desjarlais, J.: Prediction of amino acid sequence from structure. Protein Science 9(6), 1106–1119 (2000)

    Article  Google Scholar 

  34. Schiex, T.: Arc Consistency for Soft Constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 411–424. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  35. Swain, M.T., Kemp, G.J.L.: A CLP Approach to the Protein Side-Chain Placement Problem. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 479–493. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  36. Voigt, C., Gordon, D., Mayo, S.: Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design. Journal of Molecular Biology 299(3), 789–803 (2000)

    Article  Google Scholar 

  37. Wallace, R.J.: Directed Arc Consistency Preprocessing. In: Meyer, M. (ed.) Constraint Processing. LNCS, vol. 923, pp. 121–137. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allouche, D. et al. (2012). Computational Protein Design as a Cost Function Network Optimization Problem. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics