Abstract
Breaking the exponential number of all symmetries of a constraint satisfaction problem is often too costly. In practice, we often aim at breaking a subset of the symmetries efficiently, which we call target symmetries. In static symmetry breaking, the goal is to post a set of constraints to break these target symmetries in order to reduce the solution set and thus also the search space. Symmetries of a problem are all intertwined. A symmetry breaking constraint intended for a particular symmetry almost always breaks more than just the intended symmetry as a side-effect. Different constraints for breaking the same target symmetry can have different side-effects. Conventional wisdom suggests that we should select a symmetry breaking constraint that has more side-effects by breaking more symmetries. While this wisdom is valid in many ways, we should be careful where the side-effects take place. A symmetry σ of a CSP \(\mathcal{P} = (\mathcal{V},\mathcal{D},\mathcal{C})\) is preserved by a set of symmetry breaking constraints Csb iff σ is a symmetry of \(\mathcal{P}' = (\mathcal{V},\mathcal{D},\mathcal{C} \cup C^{sb})\). We give theorems and examples to demonstrate that it is beneficial to post symmetry breaking constraints that preserve the target symmetries and restrict the side-effects to only non-target symmetries as much as possible. The benefits are in terms of the number of symmetries broken and the extent to which a symmetry is broken (or eliminated), resulting in a smaller solution set and search space. Extensive experiments are also conducted to confirm the feasibility and efficiency of our proposal empirically.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult sat instances in the presence of symmetry. In: DAC 2002, pp. 731–736. ACM (2002)
Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry Definitions for Constraint Satisfaction Problems. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 17–31. Springer, Heidelberg (2005)
Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry breaking predicates for search problems. In: KR 1996, pp. 148–159 (1996)
Fahle, T., Schamberger, S., Sellmann, M.: Symmetry Breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)
Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking Row and Column Symmetries in Matrix Models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 462–477. Springer, Heidelberg (2002)
Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P.: Static and Dynamic Structural Symmetry Breaking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 695–699. Springer, Heidelberg (2006)
Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P., Ågren, M.: Dynamic structural symmetry breaking for constraint satisfaction problems. Constraints 14(4), 506–538 (2009)
Frisch, A.M., Miguel, I., Kiziltan, Z., Hnich, B., Walsh, T.: Multiset ordering constraints. In: IJCAI 2003, pp. 221–226 (2003)
Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: ECAI 2000, pp. 599–603 (2000)
Grayland, A., Jefferson, C., Miguel, I., Roney-Dougal, C.M.: Minimal ordering constraints for some families of variable symmetries. AMAI 57(1), 75–102 (2009)
Grayland, A., Miguel, I., Roney-Dougal, C.M.: Snake Lex: An Alternative to Double Lex. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 391–399. Springer, Heidelberg (2009)
Heller, D., Panda, A., Sellmann, M., Yip, J.: Model Restarts for Structural Symmetry Breaking. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 539–544. Springer, Heidelberg (2008)
Hnich, B., Kiziltan, Z., Walsh, T.: Combining symmetry breaking with other constraints: lexicographic ordering with sums. In: ISAIM 2004 (2004)
Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the covering test problem. Constraints 11(2), 199–219 (2006)
Jefferson, C., Petrie, K.E.: Automatic Generation of Constraints for Partial Symmetry Breaking. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 729–743. Springer, Heidelberg (2011)
Katsirelos, G., Narodytska, N., Walsh, T.: Combining Symmetry Breaking and Global Constraints. In: Oddi, A., Fages, F., Rossi, F. (eds.) CSCLP 2008. LNCS, vol. 5655, pp. 84–98. Springer, Heidelberg (2009)
Katsirelos, G., Narodytska, N., Walsh, T.: On the Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 305–320. Springer, Heidelberg (2010)
Katsirelos, G., Walsh, T.: Symmetries of symmetry breaking constraints. In: ECAI 2010, pp. 861–866 (2010)
Law, Y.C., Lee, J.H.M.: Symmetry breaking constraints for value symmetries in constraint satisfaction. Constraints 11(2), 221–267 (2006)
McDonald, I., Smith, B.: Partial Symmetry Breaking. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 431–445. Springer, Heidelberg (2002)
Puget, J.-F.: Breaking symmetries in all different problems. In: IJCAI 2005, pp. 272–277 (2005)
Puget, J.-F.: On the Satisfiability of Symmetrical Constrained Satisfaction Problems. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 350–361. Springer, Heidelberg (1993)
Puget, J.-F.: Breaking All Value Symmetries in Surjection Problems. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 490–504. Springer, Heidelberg (2005)
Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: AAAI 1994, pp. 362–367 (1994)
Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: AAAI 1996, vol. 1, pp. 209–215 (1996)
Smith, B.M.: Sets of symmetry breaking constraints. In: SymCon 2005 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, J.H.M., Li, J. (2012). Increasing Symmetry Breaking by Preserving Target Symmetries. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-642-33558-7_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33557-0
Online ISBN: 978-3-642-33558-7
eBook Packages: Computer ScienceComputer Science (R0)