Propagating Soft Table Constraints | SpringerLink
Skip to main content

Propagating Soft Table Constraints

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

WCSP is a framework that has attracted a lot of attention during the last decade. In particular, many filtering approaches have been developed on the concept of equivalence-preserving transformations (cost transfer operations), using the definition of soft local consistencies such as, for example, node consistency, arc consistency, full directional arc consistency, and existential directional arc consistency. Almost all algorithms related to these properties have been introduced for binary weighted constraint networks, and most of the conducted experiments typically include networks with binary and ternary constraints only. In this paper, we focus on extensional soft constraints (of large arity), so-called soft table constraints. We propose an algorithm to enforce a soft version of generalized arc consistency (GAC) on such constraints, by combining both the techniques of cost transfer and simple tabular reduction, the latter dynamically maintaining the list of allowed tuples in constraint tables. On various series of problem instances containing soft table constraints of large arity, we show the practical interest of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allouche, D., Bessiere, C., Boizumault, P., de Givry, S., Gutierrez, P., Loudni, S., Métivier, J.-P., Schiex, T.: Decomposing global cost functions. In: Proceedings of AAAI 2012 (2012)

    Google Scholar 

  2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

    Google Scholar 

  3. Cooper, M.C.: Reduction operations in fuzzy or valued constraint satisfaction. Fuzzy Sets and Systems 134(3), 311–342 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cooper, M.C., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft arc consistency revisited. Artificial Intelligence 174(7-8), 449–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cooper, M.C., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154(1-2), 199–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Givry, S., Heras, F., Zytnicki, M., Larrosa, J.: Existential arc consistency: Getting closer to full arc consistency in weighted CSPs. In: Proceedings of IJCAI 2005, pp. 84–89 (2005)

    Google Scholar 

  7. Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combinatorial optimization in graphical models. In: Proceedings of IJCAI 2011, pp. 2126–2132 (2011)

    Google Scholar 

  8. Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Artificial Intelligence 58(1-3), 21–70 (1992)

    Article  MathSciNet  Google Scholar 

  9. Larrosa, J.: Node and arc consistency in weighted CSP. In: Proceedings of AAAI 2002, pp. 48–53 (2002)

    Google Scholar 

  10. Larrosa, J., Meseguer, P.: Partition-Based lower bound for Max-CSP. Constraints 7, 407–419 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Larrosa, J., Meseguer, P., Schiex, T.: Maintaining reversible DAC for Max-CSP. Artificial Intelligence 107(1), 149–163 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artificial Intelligence 159(1-2), 1–26 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lecoutre, C.: STR2: Optimized simple tabular reduction for table constraint. Constraints 16(4), 341–371 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lee, J., Leung, K.: Towards efficient consistency enforcement for global constraints in weighted constraint satisfaction. In: Proceedings of IJCAI 2009, pp. 559–565 (2009)

    Google Scholar 

  15. Lee, J., Leung, K.: A stronger consistency for soft global constraints in weighted constraint satisfaction. In: Proceedings of AAAI 2010, pp. 121–127 (2010)

    Google Scholar 

  16. Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Information Science 177, 3639–3678 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: easy generation of hard (satisfiable) instances. Artificial Intelligence 171(8-9), 514–534 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lecoutre, C., Paris, N., Roussel, O., Tabary, S. (2012). Propagating Soft Table Constraints. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics